Gallbladder cancer.
Journal
Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103
Informations de publication
Date de publication:
27 10 2022
27 10 2022
Historique:
accepted:
20
09
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
1
11
2022
Statut:
epublish
Résumé
Gallbladder cancer (GBC) is the most common cancer of the biliary tract, characterized by a very poor prognosis when diagnosed at advanced stages owing to its aggressive behaviour and limited therapeutic options. Early detection at a curable stage remains challenging because patients rarely exhibit symptoms; indeed, most GBCs are discovered incidentally following cholecystectomy for symptomatic gallbladder stones. Long-standing chronic inflammation is an important driver of GBC, regardless of the lithiasic or non-lithiasic origin. Advances in omics technologies have provided a deeper understanding of GBC pathogenesis, uncovering mechanisms associated with inflammation-driven tumour initiation and progression. Surgical resection is the only treatment with curative intent for GBC but very few cases are suitable for resection and most adjuvant therapy has a very low response rate. Several unmet clinical needs require to be addressed to improve GBC management, including discovery and validation of reliable biomarkers for screening, therapy selection and prognosis. Standardization of preneoplastic and neoplastic lesion nomenclature, as well as surgical specimen processing and sampling, now provides reproducible and comparable research data that provide a basis for identifying and implementing early detection strategies and improving drug discovery. Advances in the understanding of next-generation sequencing, multidisciplinary care for GBC, neoadjuvant and adjuvant strategies, and novel systemic therapies including chemotherapy and immunotherapies are gradually changing the treatment paradigm and prognosis of this recalcitrant cancer.
Identifiants
pubmed: 36302789
doi: 10.1038/s41572-022-00398-y
pii: 10.1038/s41572-022-00398-y
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
69Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. Springer Nature Limited.
Références
Roa, I., Ibacache, G., Munoz, S. & de Aretxabala, X. Gallbladder cancer in Chile: pathologic characteristics of survival and prognostic factors: analysis of 1366 cases. Am. J. Clin. Pathol. 141, 675–682 (2014).
pubmed: 24713738
doi: 10.1309/AJCPQT3ELN2BBCKA
Kapoor, V. K. Gallbladder neck cancer and perihilar cholangiocarcinoma - siblings, cousins or look alikes? Korean J. Hepatobiliary Pancreat. Surg. 19, 86–88 (2015).
pubmed: 26155284
pmcid: 4494084
doi: 10.14701/kjhbps.2015.19.2.86
Roa, J. C., Basturk, O. & Adsay, V. Dysplasia and carcinoma of the gallbladder: pathological evaluation, sampling, differential diagnosis and clinical implications. Histopathology 79, 2–19 (2021). Complete review that sets the basis for morphology nomenclature of preneoplastic and neoplastic gallbladder lesions.
pubmed: 33629395
doi: 10.1111/his.14360
Roa, J., Adsay, N. V., Arola, J., Tsu, W. & Zen, Y. in Digestive System Tumours Vol. 1 WHO Classification of Tumours (ed. WHO Classification of Tumours Editorial Board) Ch. 9, 283–288 (IARC, 2019).
Sharma, A., Sharma, K. L., Gupta, A., Yadav, A. & Kumar, A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: recent update. World J. Gastroenterol. 23, 3978–3998 (2017).
pubmed: 28652652
pmcid: 5473118
doi: 10.3748/wjg.v23.i22.3978
Espinoza, J. A. et al. The inflammatory inception of gallbladder cancer. Biochim. Biophys. Acta 1865, 245–254 (2016). This review describes the evidence linking inflammation to the generation of GBC and delineates the implications for carcinogenesis and cancer prevention.
pubmed: 26980625
pmcid: 6287912
Nepal, C. et al. Integrative molecular characterisation of gallbladder cancer reveals micro-environment-associated subtypes. J. Hepatol. 74, 1132–1144 (2021). One of the first comprehensive molecular characterizations of gallbladder cancer.
pubmed: 33276026
doi: 10.1016/j.jhep.2020.11.033
Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013). First article including GBC information and as a separate entity from cholangiocarcinoma.
pubmed: 24185509
pmcid: 4013720
doi: 10.1038/ng.2813
Javle, M., Zhao, H. & Abou-Alfa, G. K. Systemic therapy for gallbladder cancer. Chin. Clin. Oncol. 8, 15 (2019).
doi: 10.21037/cco.2019.08.14
Javle, M. M. et al. Pertuzumab + trastuzumab for HER2-positive metastatic biliary cancer: preliminary data from MyPathway. J. Clin. Oncol. 35, 402–402 (2017).
doi: 10.1200/JCO.2017.35.4_suppl.402
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338
doi: 10.3322/caac.21660
Huang, J. et al. Worldwide distribution, associated factors, and trends of gallbladder cancer: a global country-level analysis. Cancer Lett. 521, 238–251 (2021). This paper describes worldwide gallbladder cancer incidence and mortality, and ecological associations with risk factors.
pubmed: 34506845
doi: 10.1016/j.canlet.2021.09.004
Miranda-Filho, A. et al. Gallbladder and extrahepatic bile duct cancers in the Americas: incidence and mortality patterns and trends. Int. J. Cancer 147, 978–989 (2020).
pubmed: 31922259
pmcid: 8629410
doi: 10.1002/ijc.32863
Van Dyke, A. L. et al. Biliary tract cancer incidence and trends in the United States by demographic group, 1999–2013. Cancer 125, 1489–1498 (2019).
pubmed: 30645774
doi: 10.1002/cncr.31942
Malhotra, R. K., Manoharan, N., Shukla, N. K. & Rath, G. K. Gallbladder cancer incidence in Delhi urban: A 25-year trend analysis. Indian. J. Cancer 54, 673–677 (2017).
pubmed: 30082556
doi: 10.4103/ijc.IJC_393_17
Dutta, U., Bush, N., Kalsi, D., Popli, P. & Kapoor, V. K. Epidemiology of gallbladder cancer in India. Chin. Clin. Oncol. 8, 33 (2019).
pubmed: 31484488
doi: 10.21037/cco.2019.08.03
Koshiol, J., Ferreccio, C., Devesa, S. S., Roa, J. C. & Fraumeni, J. F. Jr. in Cancer Epidemiology and Prevention (eds Thun, M. J. et al.) Ch. 34, 661–670 (Oxford Univ. Press, 2017).
Henley, S. J., Weir, H. K., Jim, M. A., Watson, M. & Richardson, L. C. Gallbladder cancer incidence and mortality, United States 1999–2011. Cancer Epidemiol. Biomark. Prev. 24, 1319–1326 (2015).
doi: 10.1158/1055-9965.EPI-15-0199
Lemrow, S. M. et al. Gallbladder cancer incidence among American Indians and Alaska Natives, US, 1999-2004. Cancer 113, 1266–1273 (2008).
pubmed: 18720382
doi: 10.1002/cncr.23737
Randi, G., Franceschi, S. & La Vecchia, C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int. J. Cancer 118, 1591–1602 (2006).
pubmed: 16397865
doi: 10.1002/ijc.21683
Mhatre, S. S. et al. Place of birth and risk of gallbladder cancer in India. Indian. J. Cancer 53, 304–308 (2016).
pubmed: 28071634
doi: 10.4103/0019-509X.197723
Hundal, R. & Shaffer, E. A. Gallbladder cancer: epidemiology and outcome. Clin. Epidemiol. 6, 99–109 (2014). This paper describes the prevalence of gallstones relative to the prevalence of GBC.
pubmed: 24634588
pmcid: 3952897
Lazcano-Ponce, E. C. et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J. Clin. 51, 349–364 (2001).
pubmed: 11760569
doi: 10.3322/canjclin.51.6.349
Shaffer, E. A. Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century? Curr. Gastroenterol. Rep. 7, 132–140 (2005).
pubmed: 15802102
doi: 10.1007/s11894-005-0051-8
Hsing, A. W. et al. Gallstones and the risk of biliary tract cancer: a population-based study in China. Br. J. Cancer 97, 1577–1582 (2007).
pubmed: 18000509
pmcid: 2360257
doi: 10.1038/sj.bjc.6604047
Shrikhande, S. V., Barreto, S. G., Singh, S., Udwadia, T. E. & Agarwal, A. K. Cholelithiasis in gallbladder cancer: coincidence, cofactor, or cause. Eur. J. Surgical Oncol. 36, 514–519 (2010).
doi: 10.1016/j.ejso.2010.05.002
Mhatre, S. et al. Mustard oil consumption, cooking method, diet and gallbladder cancer risk in high- and low-risk regions of India. Int. J. Cancer 147, 1621–1628 (2020).
pubmed: 32142159
doi: 10.1002/ijc.32952
Tamrakar, D., Paudel, I., Adhikary, S., Rauniyar, B. & Pokharel, P. Risk factors for gallbladder cancer in nepal a case control study. Asian Pac. J. Cancer Prev. 17, 3447–3453 (2016).
pubmed: 27509990
Barahona Ponce, C. et al. Gallstones, body mass index, C-reactive protein, and gallbladder cancer: Mendelian randomization analysis of Chilean and European genotype data. Hepatology 73, 1783–1796 (2021).
pubmed: 32893372
doi: 10.1002/hep.31537
Mhatre, S. et al. The role of gallstones in gallbladder cancer in India: a Mendelian randomization study. Cancer Epidemiol. Biomark. Prev. 30, 396–403 (2021).
doi: 10.1158/1055-9965.EPI-20-0919
Wang, J. et al. RNA sequencing revealed signals of evolution from gallbladder stone to gallbladder carcinoma. Front. Oncol. 10, 823 (2020).
pubmed: 32547950
pmcid: 7272658
doi: 10.3389/fonc.2020.00823
Grimaldi, C. H. et al. Increased mortality with gallstone disease: results of a 20-year population-based survey in Pima Indians. Ann. Intern. Med. 118, 185–190 (1993).
pubmed: 8417635
doi: 10.7326/0003-4819-118-3-199302010-00005
Maringhini, A. et al. Gallstones, gallbladder cancer, and other gastrointestinal malignancies. An epidemiologic study in Rochester, Minnesota. Ann. Intern. Med. 107, 30–35 (1987).
pubmed: 3592446
doi: 10.7326/0003-4819-107-1-30
Boekstegers, F. et al. ABCB1/4 gallbladder cancer risk variants identified in India also show strong effects in Chileans. Cancer Epidemiol. 65, 101643 (2020).
pubmed: 32058310
doi: 10.1016/j.canep.2019.101643
Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).
pubmed: 25807286
doi: 10.1038/ng.3247
Mhatre, S. et al. Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study. Lancet Oncol. 18, 535–544 (2017).
pubmed: 28274756
doi: 10.1016/S1470-2045(17)30167-5
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. in A Review of Human Carcinogens. Part F: Chemical Agents and Related Occupations Vol. 100F 225–244 (IARC, 2012).
Koshiol, J. et al. Association of aflatoxin and gallbladder cancer. Gastroenterology 153, 488–494.e481 (2017).
pubmed: 28428144
doi: 10.1053/j.gastro.2017.04.005
Nogueira, L. et al. Association of aflatoxin with gallbladder cancer in Chile. JAMA 313, 2075–2077 (2015).
pubmed: 26010638
pmcid: 7169945
doi: 10.1001/jama.2015.4559
Singh, P., Callicott, K. A., Orbach, M. J. & Cotty, P. J. Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa. Front. Microbiol. 11, 1236 (2020).
pubmed: 32625180
pmcid: 7315800
doi: 10.3389/fmicb.2020.01236
Groopman, J. D. et al. Aflatoxin exposure during the first 1000 days of life in rural South Asia assessed by aflatoxin B(1)-lysine albumin biomarkers. Food Chem. Toxicol. 74, 184–189 (2014).
pubmed: 25308602
pmcid: 4322911
doi: 10.1016/j.fct.2014.09.016
Diaz de Leon-Martinez, L. et al. Evaluation of acute and chronic exposure to aflatoxin B1 in indigenous women of the Huasteca Potosina, Mexico. Env. Sci. Pollut. Res. Int. 27, 30583–30591 (2020).
doi: 10.1007/s11356-020-09361-4
Leroy, J. L., Wang, J. S. & Jones, K. Serum aflatoxin B(1)-lysine adduct level in adult women from Eastern Province in Kenya depends on household socio-economic status: a cross sectional study. Soc. Sci. Med. 146, 104–110 (2015).
pubmed: 26513119
doi: 10.1016/j.socscimed.2015.10.039
Boyd, M. L. & Cotty, P. J. Aspergillus flavus and aflatoxin contamination of leguminous trees of the Sonoran Desert in Arizona. Phytopathology 91, 913–919 (2001).
pubmed: 18944238
doi: 10.1094/PHYTO.2001.91.9.913
Hemminki, K., Forsti, A., Hemminki, O., Liska, V. & Hemminki, A. Long-term incidence and survival trends in cancer of the gallbladder and extrahepatic bile ducts in Denmark, Finland, Norway and Sweden with etiological implications related to Thorotrast. Int. J. Cancer 151, 200–208 (2022).
pubmed: 35213036
doi: 10.1002/ijc.33980
Iyer, P. et al. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect. Agent. Cancer 11, 12 (2016).
pubmed: 26941832
pmcid: 4776363
doi: 10.1186/s13027-016-0057-x
Kapoor, V. K. in A Pictorial Treatise on Gall Bladder Cancer (ed. Kapoor, V. K.) 35–55 (Springer, 2021).
Di Ciaula, A. et al. The role of diet in the pathogenesis of cholesterol gallstones. Curr. Med Chem. 26, 3620–3638 (2019).
pubmed: 28554328
pmcid: 8118138
doi: 10.2174/0929867324666170530080636
Rebholz, C., Krawczyk, M. & Lammert, F. Genetics of gallstone disease. Eur. J. Clin. Invest. 48, e12935 (2018).
pubmed: 29635711
doi: 10.1111/eci.12935
Lammert, F. et al. Gallstones. Nat. Rev. Dis. Primers 2, 16024 (2016).
pubmed: 27121416
doi: 10.1038/nrdp.2016.24
Doherty, G. et al. The need for standardizing diagnosis, treatment and clinical care of cholecystitis and biliary colic in gallbladder disease. Medicina 58, 388 (2022).
pubmed: 35334564
pmcid: 8949253
doi: 10.3390/medicina58030388
Kanoh, K. et al. Significance of contracted cholecystitis lesions as high risk for gallbladder carcinogenesis. Cancer Lett. 169, 7–14 (2001).
pubmed: 11410319
doi: 10.1016/S0304-3835(01)00523-7
Carotti, S. et al. Effect of ursodeoxycholic acid on inflammatory infiltrate in gallbladder muscle of cholesterol gallstone patients. Neurogastroenterol. Motil. 22, 866–873 (2010).
pubmed: 20426797
doi: 10.1111/j.1365-2982.2010.01510.x
Mukhopadhyay, S. & Landas, S. K. Putative precursors of gallbladder dysplasia: a review of 400 routinely resected specimens. Arch. Pathol. Lab. Med. 129, 386–390 (2005).
pubmed: 15737036
doi: 10.5858/2005-129-386-PPOGDA
Seretis, C. et al. Metaplastic changes in chronic cholecystitis: implications for early diagnosis and surgical intervention to prevent the gallbladder metaplasia-dysplasia-carcinoma sequence. J. Clin. Med. Res. 6, 26–29 (2014).
pubmed: 24400028
Rege, R. V. & Prystowsky, J. B. Inflammation and a thickened mucus layer in mice with cholesterol gallstones. J. Surg. Res. 74, 81–85 (1998).
pubmed: 9536979
doi: 10.1006/jsre.1997.5213
van Erpecum, K. J. et al. Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function. J. Lipid Res. 47, 32–41 (2006).
pubmed: 16224116
doi: 10.1194/jlr.M500180-JLR200
Rosa, L. et al. Evaluation of the chemopreventive potentials of ezetimibe and aspirin in a novel mouse model of gallbladder preneoplasia. Mol. Oncol. 14, 2834–2852 (2020). This work describes a new mouse model that recapitulates the metaplasia–dysplasia sequence observed in humans and demonstrates that a lithogenic high-cholesterol diet induces the development of cholecystolithiasis, chronic inflammation and preneoplastic lesions.
pubmed: 33326125
pmcid: 7607176
doi: 10.1002/1878-0261.12766
Barreto, S. G., Dutt, A. & Chaudhary, A. A genetic model for gallbladder carcinogenesis and its dissemination. Ann. Oncol. 25, 1086–1097 (2014).
pubmed: 24705974
pmcid: 4037856
doi: 10.1093/annonc/mdu006
Pandey, A. et al. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate. Nat. Commun. 11, 4225 (2020). This paper reports a comprehensive analysis of GBCs from three geographically different regions and identifies ELF3 as a potential gallbladder cancer vaccine candidate.
pubmed: 32839463
pmcid: 7445288
doi: 10.1038/s41467-020-17880-4
Ohnishi, S. et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid. Med. Cell Longev. 2013, 387014 (2013).
pubmed: 24382987
pmcid: 3870134
doi: 10.1155/2013/387014
Neganova, M., Liu, J., Aleksandrova, Y., Klochkov, S. & Fan, R. Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers 13, 6062 (2021).
pubmed: 34885171
pmcid: 8657135
doi: 10.3390/cancers13236062
Moreno, M., Pimentel, F., Gazdar, A. F., Wistuba, I. I. & Miquel, J. F. TP53 abnormalities are frequent and early events in the sequential pathogenesis of gallbladder carcinoma. Ann. Hepatol. 4, 192–199 (2005).
pubmed: 16177659
doi: 10.1016/S1665-2681(19)32065-4
Iyer, P. et al. ERBB2 and KRAS alterations mediate response to EGFR inhibitors in early stage gallbladder cancer. Int. J. Cancer 144, 2008–2019 (2019).
pubmed: 30304546
doi: 10.1002/ijc.31916
Ajani, J. A. et al. Gastric adenocarcinoma. Nat. Rev. Dis. Primers 3, 17036 (2017).
pubmed: 28569272
doi: 10.1038/nrdp.2017.36
Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 44, 690–693 (2012).
pubmed: 22561520
doi: 10.1038/ng.2273
Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013).
pubmed: 24185513
doi: 10.1038/ng.2806
Shah, S. C. & Itzkowitz, S. H. Colorectal cancer in inflammatory bowel disease: mechanisms and management. Gastroenterology 162, 715–730.e3 (2022).
pubmed: 34757143
doi: 10.1053/j.gastro.2021.10.035
Abdel-Wahab, R. et al. Genomic profiling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer. Sci. Rep. 10, 22087 (2020). This is the first and the most comprehensive study to date evaluating the frequency of DNA repair genetic aberrations in GBC, hopefully incentivizing clinical trials for this patient subgroup.
pubmed: 33328484
pmcid: 7745036
doi: 10.1038/s41598-020-77939-6
Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E. & Malki, M. I. DNA damage/repair management in cancers. Cancers 12, 1050 (2020).
pmcid: 7226105
doi: 10.3390/cancers12041050
Jain, K. et al. Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer. Ann. Surg. 260, 1073–1080 (2014).
pubmed: 24827397
doi: 10.1097/SLA.0000000000000495
Wistuba, I. I. et al. Fragile histidine triad gene abnormalities in the pathogenesis of gallbladder carcinoma. Am. J. Pathol. 160, 2073–2079 (2002).
pubmed: 12057912
pmcid: 1850840
doi: 10.1016/S0002-9440(10)61157-1
Priya, T. P., Kapoor, V. K., Krishnani, N., Agrawal, V. & Agarwal, S. Fragile histidine triad (FHIT) gene and its association with p53 protein expression in the progression of gall bladder cancer. Cancer Invest. 27, 764–773 (2009).
pubmed: 19452299
doi: 10.1080/07357900802711304
Priya, T. P., Kapoor, V. K., Krishnani, N., Agrawal, V. & Agrawal, S. Role of E-cadherin gene in gall bladder cancer and its precursor lesions. Virchows Arch. 456, 507–514 (2010).
pubmed: 20376482
doi: 10.1007/s00428-010-0908-6
House, M. G. et al. Progression of gene hypermethylation in gallstone disease leading to gallbladder cancer. Ann. Surg. Oncol. 10, 882–889 (2003).
pubmed: 14527906
doi: 10.1245/ASO.2003.02.014
Takahashi, T. et al. Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chronic cholecystitis. Clin. Cancer Res. 10, 6126–6133 (2004).
pubmed: 15447999
doi: 10.1158/1078-0432.CCR-04-0579
Garcia, P. et al. Promoter methylation profile in preneoplastic and neoplastic gallbladder lesions. Mol. Carcinog. 48, 79–89 (2009).
pubmed: 18543280
doi: 10.1002/mc.20457
Bragelmann, J. et al. Epigenome-wide analysis of methylation changes in the sequence of gallstone disease, dysplasia, and gallbladder cancer. Hepatology 73, 2293–2310 (2021).
pubmed: 33020926
doi: 10.1002/hep.31585
Das, D., Karthik, N. & Taneja, R. Crosstalk between inflammatory signaling and methylation in cancer. Front. Cell Dev. Biol. 9, 756458 (2021).
pubmed: 34901003
pmcid: 8652226
doi: 10.3389/fcell.2021.756458
Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).
pubmed: 34248142
pmcid: 8273155
doi: 10.1038/s41392-021-00658-5
Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. & Hermoso, M. A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185 (2014).
pubmed: 24901008
pmcid: 4036716
doi: 10.1155/2014/149185
Basturk, O., Aishima, S. & Esposito, I. in Digestive System Tumours Vol. 1 WHO Classification of Tumours (ed. WHO Classification of Tumours Editorial Board) 276–278 (IARC, 2019).
Fukumura, Y. et al. Precursor lesions of gallbladder carcinoma: disease concept, pathology, and genetics. Diagnostics 12, 341 (2022).
pubmed: 35204432
pmcid: 8871096
doi: 10.3390/diagnostics12020341
Muraki, T. et al. Reflux-associated cholecystopathy: analysis of 76 gallbladders from patients with supra-oddi union of the pancreatic duct and common bile duct (pancreatobiliary maljunction) elucidates a specific diagnostic pattern of mucosal hyperplasia as a prelude to carcinoma. Am. J. Surg. Pathol. 41, 1167–1177 (2017).
pubmed: 28622182
pmcid: 8722026
doi: 10.1097/PAS.0000000000000882
Muraki, T. et al. Pancreatobiliary maljunction-associated gallbladder cancer is as common in the West, shows distinct clinicopathologic characteristics and offers an invaluable model for anatomy-induced reflux-associated physio-chemical carcinogenesis. Ann. Surg. 276, e32–e39 (2022).
pubmed: 33201123
doi: 10.1097/SLA.0000000000004482
Fukuzawa, H. et al. Mechanism of pancreatic juice reflux in pancreaticobiliary maljunction: a fluid dynamics model experiment. J. Hepatobiliary Pancreat. Sci. 27, 265–272 (2020).
pubmed: 31943809
doi: 10.1002/jhbp.714
Kamisawa, T. et al. Biliary carcinogenesis in pancreaticobiliary maljunction. J. Gastroenterol. 52, 158–163 (2017).
pubmed: 27704265
doi: 10.1007/s00535-016-1268-z
Otani, K. et al. Immunohistochemical detection of 8-hydroxy-2′-deoxyguanosine in gallbladder epithelium of patients with pancreaticobiliary maljunction. Eur. J. Gastroenterol. Hepatol. 13, 1363–1369 (2001).
pubmed: 11692064
doi: 10.1097/00042737-200111000-00016
Kuraishi, Y. et al. Impact of DNA double-strand breaks on pancreaticobiliary maljunction carcinogenesis. Diagn. Pathol. 16, 72 (2021).
pubmed: 34372868
pmcid: 8353780
doi: 10.1186/s13000-021-01132-0
Kawakami, S. et al. Stepwise correlation of TP53 mutations from pancreaticobiliary maljunction to gallbladder carcinoma: a retrospective study. BMC Cancer 21, 1245 (2021).
pubmed: 34798839
pmcid: 8605550
doi: 10.1186/s12885-021-09000-2
Akita, M. et al. Intracholecystic papillary neoplasms are distinct from papillary gallbladder cancers: a clinicopathologic and exome-sequencing study. Am. J. Surg. Pathol. 43, 783–791 (2019).
pubmed: 30807303
doi: 10.1097/PAS.0000000000001237
Javle, M. et al. Molecular characterization of gallbladder cancer using somatic mutation profiling. Hum. Pathol. 45, 701–708 (2014). The first comprehensive descriptive molecular genetic cohort of GBC using exome sequencing.
pubmed: 24508317
doi: 10.1016/j.humpath.2013.11.001
Li, M. et al. Genomic ERBB2/ERBB3 mutations promote PD-L1-mediated immune escape in gallbladder cancer: a whole-exome sequencing analysis. Gut 68, 1024–1033 (2019).
pubmed: 29954840
doi: 10.1136/gutjnl-2018-316039
Yang, P. et al. Somatic genetic aberrations in gallbladder cancer: comparison between Chinese and US patients. Hepatobiliary Surg. Nutr. 8, 604–614 (2019).
pubmed: 31929987
pmcid: 6943012
doi: 10.21037/hbsn.2019.04.11
Li, M. et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat. Genet. 46, 872–876 (2014).
pubmed: 24997986
doi: 10.1038/ng.3030
Ebata, N. et al. Molecular classification and tumor microenvironment characterization of gallbladder cancer by comprehensive genomic and transcriptomic analysis. Cancers 13, 733 (2021).
pubmed: 33578820
pmcid: 7916565
doi: 10.3390/cancers13040733
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
doi: 10.1038/s41586-020-1943-3
Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).
pubmed: 26258846
doi: 10.1038/ng.3375
Roa, J. C. et al. Microsatellite instability in preneoplastic and neoplastic lesions of the gallbladder. J. Gastroenterol. 40, 79–86 (2005).
pubmed: 15692793
doi: 10.1007/s00535-004-1497-4
Goeppert, B. et al. Low frequency of mismatch repair deficiency in gallbladder cancer. Diagn. Pathol. 14, 36 (2019).
pubmed: 31068195
pmcid: 6506936
doi: 10.1186/s13000-019-0813-5
Weinberg, B. A. et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J. Gastrointest. Oncol. 10, 652–662 (2019).
pubmed: 31392046
pmcid: 6657312
doi: 10.21037/jgo.2018.08.18
Javle, M. M. et al. Precision medicine for gallbladder cancer using somatic copy number amplifications (SCNA) and DNA repair pathway gene alterations. J. Clin. Oncol. 35, 4076–4076 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.4076
Roa, I. et al. Overexpression of the HER2/neu gene: a new therapeutic possibility for patients with advanced gallbladder cancer. Gastrointest. Cancer Res. 7, 42–48 (2014). The first description of HER2 as a potential target for therapy in GBC.
pubmed: 24799970
pmcid: 4007675
Zhang, Y. et al. Single-cell RNA-sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB pathway-mutated gallbladder cancer. J. Hepatol. 75, 1128–1141 (2021).
pubmed: 34171432
doi: 10.1016/j.jhep.2021.06.023
Dixit, R., Pandey, M., Tripathi, S. K., Dwivedi, A. N. & Shukla, V. K. Comparative analysis of mutational profile of sonic hedgehog gene in gallbladder cancer. Dig. Dis. Sci. 62, 708–714 (2017).
pubmed: 28058596
doi: 10.1007/s10620-016-4438-1
Xie, F. et al. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma. Hum. Pathol. 45, 513–521 (2014).
pubmed: 24440094
doi: 10.1016/j.humpath.2013.10.017
Bizama, C. et al. Targeting specific molecular pathways holds promise for advanced gallbladder cancer therapy. Cancer Treat. Rev. 41, 222–234 (2015).
pubmed: 25639632
doi: 10.1016/j.ctrv.2015.01.003
Mishra, S. et al. Genomic profiling of gallbladder carcinoma: targetable mutations and pathways involved. Pathol. Res. Pract. 232, 153806 (2022).
pubmed: 35231860
doi: 10.1016/j.prp.2022.153806
Aggarwal, V., Montoya, C. A., Donnenberg, V. S. & Sant, S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 24, 102113 (2021).
pubmed: 33659878
pmcid: 7892926
doi: 10.1016/j.isci.2021.102113
Deshmukh, A. P. et al. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc. Natl Acad. Sci. USA 118, e2102050118 (2021).
pubmed: 33941680
pmcid: 8126782
doi: 10.1073/pnas.2102050118
Romeo, E., Caserta, C. A., Rumio, C. & Marcucci, F. The vicious cross-talk between tumor cells with an EMT phenotype and cells of the immune system. Cells 8, 460 (2019).
pmcid: 6562673
doi: 10.3390/cells8050460
Chen, P. et al. Diversity and intratumoral heterogeneity in human gallbladder cancer progression revealed by single-cell RNA sequencing. Clin. Transl Med. 11, e462 (2021).
pubmed: 34185421
pmcid: 8236117
doi: 10.1002/ctm2.462
Bagci, P. et al. Cellular phenotypes in gallbladder dysplasia: diagnostic significance and clinical associations in an analysis of 318 cases [abstract 1663]. Lab. Invest. 93 (Suppl. 1), 398A (2013).
Dursun, N. et al. Metaplasia in the gallbladder: an analysis of clinicopathologic associations in 1218 cholecystectomies [abstract 618]. Mod. Pathol. 24 (Suppl. 1), 147A (2011).
Memis, B. et al. Frequency of dysplasia/carcinoma and foveolar atypia associated with gallbladder cancer risk: Comparative analysis in mapped/totally sampled gallbladders from high-risk versus low-risk regions [abstract]. Lab. Invest. 32 (Suppl. 2), 1699 (2019).
de Aretxabala, X. et al. Gallbladder cancer: an analysis of a series of 139 patients with invasion restricted to the subserosal layer. J. Gastrointest. Surg. 10, 186–192 (2006).
pubmed: 16455449
doi: 10.1016/j.gassur.2005.11.003
Adsay, V. et al. Epithelial atypia in the gallbladder: diagnosis and classification in an international consensus study [abstract 1738]. Lab. Invest. 96 (Suppl. 1), 438A–439A (2016).
Vieth, M., Riddell, R. H. & Montgomery, E. A. High-grade dysplasia versus carcinoma: east is east and west is west, but does it need to be that way? Am. J. Surg. Pathol. 38, 1453–1456 (2014).
pubmed: 25025446
doi: 10.1097/PAS.0000000000000288
Adsay, V. et al. Intracholecystic papillary-tubular neoplasms (ICPN) of the gallbladder (neoplastic polyps, adenomas, and papillary neoplasms that are >/=1.0 cm): clinicopathologic and immunohistochemical analysis of 123 cases. Am. J. Surg. Pathol. 36, 1279–1301 (2012).
pubmed: 22895264
doi: 10.1097/PAS.0b013e318262787c
Nakanuma, Y. et al. Characterization of high-grade biliary intraepithelial neoplasm of the gallbladder in comparison with intracholecystic papillary neoplasm. Hum. Pathol. 116, 22–30 (2021).
pubmed: 34265338
doi: 10.1016/j.humpath.2021.06.007
Kang, J. S. et al. A comparison of outcomes in patients with intracholecystic papillary neoplasms or conventional adenocarcinomas of the gallbladder. HPB 23, 746–752 (2021).
pubmed: 33092965
doi: 10.1016/j.hpb.2020.09.011
Mochidome, N. et al. Prognostic implications of the coexisting precursor lesion types in invasive gallbladder cancer. Hum. Pathol. 114, 44–53 (2021).
pubmed: 33989638
doi: 10.1016/j.humpath.2021.05.001
Shindoh, J. et al. Tumor location is a strong predictor of tumor progression and survival in T2 gallbladder cancer: an international multicenter study. Ann. Surg. 261, 733 (2015). This article shows the importance of tumour location and patient management for GBC survival.
pubmed: 24854451
doi: 10.1097/SLA.0000000000000728
Roa, J. C. et al. Early gallbladder carcinoma has a favorable outcome but Rokitansky-Aschoff sinus involvement is an adverse prognostic factor. Virchows Arch. 463, 651–661 (2013).
pubmed: 24022828
doi: 10.1007/s00428-013-1478-1
Memis, B. et al. Not all T2 gallbladder carcinomas (GBC) are equal: proposal for sub-staging of T2 GBC with significant prognostic value [abstract]. Mod. Pathol. 29 (Suppl. 2), 438–451 (2016).
DeSimone, M. S. et al. T2 gallbladder cancer shows substantial survival variation between continents and this is not due to histopathologic criteria or pathologic sampling differences. Virchows Arch. 478, 875–884 (2021).
pubmed: 33411027
doi: 10.1007/s00428-020-02968-5
Kapoor, V. K. et al. Anticipatory extended cholecystectomy: the ‘Lucknow’ approach for thick walled gall bladder with low suspicion of cancer. Chin. Clin. Oncol. 5, 8 (2016).
pubmed: 26932432
Hamdani, N. & Kapoor, V. K. in Dilemmas in Abdominal Surgery: A Case-Based Approach (eds da Piedade Barreto, S.G.A & Shrikhande, S.V.) Ch. 28 (CRC Press, 2020).
Hawkins, W. G. et al. Jaundice predicts advanced disease and early mortality in patients with gallbladder cancer. Ann. Surg. Oncol. 11, 310–315 (2004).
pubmed: 14993027
doi: 10.1245/ASO.2004.03.011
Mishra, P. K. et al. Predictors of curative resection and long term survival of gallbladder cancer-a retrospective analysis. Am. J. Surg. 214, 278–286 (2017).
pubmed: 28233537
doi: 10.1016/j.amjsurg.2017.02.006
Tran, T. B. et al. Gallbladder cancer presenting with jaundice: uniformly fatal or still potentially curable? J. Gastrointest. Surg. 21, 1245–1253 (2017).
pubmed: 28497252
pmcid: 5907798
doi: 10.1007/s11605-017-3440-z
Corvera, C. U. et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J. Am. Coll. Surg. 206, 57–65 (2008).
pubmed: 18155569
doi: 10.1016/j.jamcollsurg.2007.07.002
Povoski, S. P., Ouellette, J. R., Chang, W. W. & Jarnagin, W. R. Axillary lymph node metastasis following resection of abdominal wall laparoscopic port site recurrence of gallbladder cancer. J. Hepatobiliary Pancreat. Surg. 11, 197–202 (2004).
pubmed: 15235894
doi: 10.1007/s00534-003-0870-7
Goel, S. et al. 18-FDG PET-CT should be included in preoperative staging of gall bladder cancer. Eur. J. Surgical Oncol. 46, 1711–1716 (2020).
doi: 10.1016/j.ejso.2020.04.015
Behari, A. & Kapoor, V. K. Incidental gall bladder cancer. Adv. Surg. 47, 227–249 (2013).
pubmed: 24298854
doi: 10.1016/j.yasu.2013.04.003
Duffy, A. et al. Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Centre (MSKCC). J. Surg. Oncol. 98, 485–489 (2008).
pubmed: 18802958
doi: 10.1002/jso.21141
Gamboa, A. C. & Maithel, S. K. The landmark series: gallbladder cancer. Ann. Surg. Oncol. 27, 2846–2858 (2020).
pubmed: 32474816
doi: 10.1245/s10434-020-08654-9
Goel, S. et al. Multimodality management of gallbladder cancer can lead to a better outcome: experience from a tertiary care oncology centre in North India. World J. Gastroenterol. 27, 7813–7830 (2021).
pubmed: 34963744
pmcid: 8661382
doi: 10.3748/wjg.v27.i45.7813
Butte, J. M. et al. The role of laparoscopic staging in patients with incidental gallbladder cancer. HPB 13, 463–472 (2011).
pubmed: 21689230
pmcid: 3133713
doi: 10.1111/j.1477-2574.2011.00325.x
Ethun, C. G. et al. Pathologic and prognostic implications of incidental versus nonincidental gallbladder cancer: a 10-institution study from the United States Extrahepatic Biliary Malignancy Consortium. Am. Surg. 83, 679–686 (2017).
pubmed: 28738935
pmcid: 5915617
doi: 10.1177/000313481708300721
Zaidi, M. Y. et al. Evaluation and management of incidental gallbladder cancer. Chin. Clin. Oncol. 8, 37 (2019).
pubmed: 31431030
pmcid: 8289444
doi: 10.21037/cco.2019.07.01
Qadan, M. & Kingham, T. P. Technical aspects of gallbladder cancer surgery. Surg. Clin. North Am. 96, 229–245 (2016).
pubmed: 27017862
pmcid: 4907326
doi: 10.1016/j.suc.2015.12.007
Agarwal, A. K., Kalayarasan, R., Javed, A., Gupta, N. & Nag, H. H. The role of staging laparoscopy in primary gall bladder cancer-an analysis of 409 patients: a prospective study to evaluate the role of staging laparoscopy in the management of gallbladder cancer. Ann. Surg. 258, 318–323 (2013).
pubmed: 23059504
doi: 10.1097/SLA.0b013e318271497e
Kang, J. S. et al. Limits of serum carcinoembryonic antigen and carbohydrate antigen 19-9 as the diagnosis of gallbladder cancer. Ann. Surg. Treat. Res. 101, 266–273 (2021).
pubmed: 34796142
pmcid: 8564080
doi: 10.4174/astr.2021.101.5.266
Chapman, R. et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology 51, 660–678 (2010).
pubmed: 20101749
doi: 10.1002/hep.23294
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol. 51, 237–267 (2009).
doi: 10.1016/j.jhep.2009.04.009
Lindor, K. D., Kowdley, K. V. & Harrison, M. E., American College of Gastroenterology. ACG Clinical Guideline: Primary Sclerosing Cholangitis. Am. J. Gastroenterol. 110, 646–659 (2015).
pubmed: 25869391
doi: 10.1038/ajg.2015.112
Bodmer, M., Brauchli, Y. B., Krahenbuhl, S., Jick, S. S. & Meier, C. R. Statin use and risk of gallstone disease followed by cholecystectomy. JAMA 302, 2001–2007 (2009).
pubmed: 19903921
doi: 10.1001/jama.2009.1601
Erichsen, R., Froslev, T., Lash, T. L., Pedersen, L. & Sorensen, H. T. Long-term statin use and the risk of gallstone disease: a population-based case-control study. Am. J. Epidemiol. 173, 162–170 (2011).
pubmed: 21084557
doi: 10.1093/aje/kwq361
Tsai, C. J., Leitzmann, M. F., Willett, W. C. & Giovannucci, E. L. Statin use and the risk of cholecystectomy in women. Gastroenterology 136, 1593–1600 (2009).
pubmed: 19208351
doi: 10.1053/j.gastro.2009.01.042
Liu, Z. et al. Statin use and reduced risk of biliary tract cancers in the UK Clinical Practice Research Datalink. Gut 68, 1458–1464 (2019).
pubmed: 30448774
doi: 10.1136/gutjnl-2018-317504
Marcano-Bonilla, L. et al. Aspirin, statins, non-aspirin NSAIDs, metformin and the risk of biliary cancer: a Swedish population-based cohort study. Cancer Epidemiol. Biomark. Prev. 31, 804–810 (2022).
doi: 10.1158/1055-9965.EPI-20-1322
Health Ministries & Chilean Government. Clinical Guide: Preventive Cholecystectomy in Adults between the Age of 35 and 49 (2010).
Behari, A. & Kapoor, V. K. Asymptomatic gallstones (AsGS) - To treat or not to? Indian J. Surg. 74, 4–12 (2012).
pubmed: 23372301
doi: 10.1007/s12262-011-0376-5
Nervi, F. et al. Gallbladder disease is associated with insulin resistance in a high risk Hispanic population. J. Hepatol. 45, 299–305 (2006).
pubmed: 16516330
doi: 10.1016/j.jhep.2006.01.026
Nogueira, L. et al. Gallstones, cholecystectomy, and risk of digestive system cancers. Am. J. Epidemiol. 179, 731–739 (2014).
pubmed: 24470530
pmcid: 5856086
doi: 10.1093/aje/kwt322
Ruhl, C. E. & Everhart, J. E. Relationship of non-alcoholic fatty liver disease with cholecystectomy in the US population. Am. J. Gastroenterol. 108, 952–958 (2013).
pubmed: 23545713
doi: 10.1038/ajg.2013.70
Jackson, S. S. et al. Aspirin use and survival from biliary tract cancer. JAMA Oncol. 5, 1802–1804 (2019).
pubmed: 31621809
pmcid: 6802421
doi: 10.1001/jamaoncol.2019.4328
Liao, S. F. et al. Postdiagnosis aspirin use associated with decreased biliary tract cancer-specific mortality in a large nationwide cohort. Hepatology 74, 1994–2006 (2021).
pubmed: 33942350
doi: 10.1002/hep.31879
Miyakawa, S. et al. Biliary tract cancer treatment: 5,584 results from the Biliary Tract Cancer Statistics Registry from 1998 to 2004 in Japan. J. Hepatobiliary Pancreat. Surg. 16, 1–7 (2009).
pubmed: 19110652
doi: 10.1007/s00534-008-0015-0
Sahara, K. et al. Defining and predicting early recurrence after resection for gallbladder cancer. Ann. Surg. Oncol. 28, 417–425 (2021).
pubmed: 32892270
doi: 10.1245/s10434-020-09108-y
Kapoor, V. K. Surgical procedures for gall bladder cancer. Surg. Update 2014, 127 (2014).
Shukla, H. S. et al. Indian Council of Medical Research consensus document for the management of gall bladder cancer. Indian J. Med. Paediatr. Oncol. 36, 79–84 (2015).
pubmed: 26157282
pmcid: 4477381
doi: 10.4103/0971-5851.158829
Kapoor, V. K. Is gall bladder cancer a bad cancer per se? World J. Gastrointest. Surg. 7, 107–109 (2015).
pubmed: 26225192
pmcid: 4513432
doi: 10.4240/wjgs.v7.i7.107
Ozer, M. et al. A propensity score analysis of chemotherapy use in patients with resectable gallbladder cancer. JAMA Netw. Open 5, e2146912 (2022).
pubmed: 35171262
pmcid: 8851300
doi: 10.1001/jamanetworkopen.2021.46912
Benson, A. B. et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 19, 541–565 (2021).
doi: 10.6004/jnccn.2021.0022
Khan, T. M. et al. Perioperative versus adjuvant chemotherapy in the management of incidentally found gallbladder cancer (OPT-IN). Ann. Surg. Oncol. 29, 37–38 (2022).
pubmed: 34132951
doi: 10.1245/s10434-021-10277-7
Pawlik, T. M. et al. Incidence of finding residual disease for incidental gallbladder carcinoma: implications for re-resection. J. Gastrointest. Surg. 11, 1478–1486 (2007).
pubmed: 17846848
doi: 10.1007/s11605-007-0309-6
Aloia, T. A. et al. Gallbladder cancer: expert consensus statement. HPB 17, 681–690 (2015). A consolidated report of morphological and surgical issues important in GBC management.
pubmed: 26172135
pmcid: 4527853
doi: 10.1111/hpb.12444
Agarwal, A. K., Kalayarasan, R., Javed, A. & Sakhuja, P. Role of routine 16b1 lymph node biopsy in the management of gallbladder cancer: an analysis. HPB 16, 229–234 (2014).
pubmed: 23869478
doi: 10.1111/hpb.12127
Nagino, M. et al. Clinical practice guidelines for the management of biliary tract cancers 2019: The 3rd English edition. J. Hepatobiliary Pancreat. Sci. 28, 26–54 (2021).
pubmed: 33259690
doi: 10.1002/jhbp.870
Lee, S. E. et al. Practical guidelines for the surgical treatment of gallbladder cancer. J. Korean Med. Sci. 29, 1333–1340 (2014).
pubmed: 25368485
pmcid: 4214932
doi: 10.3346/jkms.2014.29.10.1333
Kalayarasan, R. et al. A prospective analysis of the preoperative assessment of duodenal involvement in gallbladder cancer. HPB 15, 203–209 (2013).
pubmed: 23036027
pmcid: 3572281
doi: 10.1111/j.1477-2574.2012.00539.x
Ethun, C. G. et al. Routine port-site excision in incidentally discovered gallbladder cancer is not associated with improved survival: a multi-institution analysis from the US Extrahepatic Biliary Malignancy Consortium. J. Surg. Oncol. 115, 805–811 (2017).
pubmed: 28230242
pmcid: 5800745
doi: 10.1002/jso.24591
Maker, A. V. et al. Is port site resection necessary in the surgical management of gallbladder cancer? Ann. Surg. Oncol. 19, 409–417 (2012).
pubmed: 21698501
doi: 10.1245/s10434-011-1850-9
Han, H. S. et al. Laparoscopic surgery for gallbladder cancer: an expert consensus statement. Dig. Surg. 36, 1–6 (2019).
pubmed: 29339660
doi: 10.1159/000486207
Goel, M., Kurunkar, S. R., Kanetkar, A. & Patkar, S. Outcome of robot-assisted radical cholecystectomy in a high-volume tertiary cancer center in India. J. Laparoendosc. Adv. Surg. Tech. B Videoscop. 29, vor.208.0539 (2019).
Agarwal, A. K., Javed, A., Kalayarasan, R. & Sakhuja, P. Minimally invasive versus the conventional open surgical approach of a radical cholecystectomy for gallbladder cancer: a retrospective comparative study. HPB 17, 536–541 (2015).
pubmed: 25727091
pmcid: 4430785
doi: 10.1111/hpb.12406
Kapoor, V. K. Jaundice in gall bladder cancer–the yellow signal. Clin. Med. Rev. Oncol. 5, 1–3 (2015).
doi: 10.4137/CMRO.S31252
Goel, M. et al. Towards standardization of management of gallbladder carcinoma with obstructive jaundice: analysis of 113 cases over 10 years at a single institution. J. Surg. Oncol. 124, 572–580 (2021).
pubmed: 34106475
doi: 10.1002/jso.26564
Valle, J. W. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v28–v37 (2016).
pubmed: 27664259
doi: 10.1093/annonc/mdw324
Schwartz, L. H. et al. Gallbladder carcinoma: findings at MR imaging with MR cholangiopancreatography. J. Comput. Assist. Tomogr. 26, 405–410 (2002).
pubmed: 12016370
doi: 10.1097/00004728-200205000-00015
Lee, H. et al. Optimal extent of surgery for early gallbladder cancer with regard to long-term survival: a meta-analysis. J. Hepatobiliary Pancreat. Sci. 25, 131–141 (2018).
pubmed: 29117469
doi: 10.1002/jhbp.521
Burasakarn, P., Thienhiran, A., Hongjinda, S. & Fuengfoo, P. The optimal extent of surgery in T2 gallbladder cancer and the need for hepatectomy: a meta-analysis. Asian J. Surg. 45, 33–38 (2022).
pubmed: 34052085
doi: 10.1016/j.asjsur.2021.05.005
American Cancer Society. Key Statistics of Gallbladder Cancer. American Cancer Society https://www.cancer.org/cancer/gallbladder-cancer/about/key-statistics.html (2022).
Zhang, W., Huang, Z., Wang, W. E. & Che, X. Survival benefits of simple versus extended cholecystectomy and lymphadenectomy for patients with T2 gallbladder cancer: a propensity-matched population-based study (2010 to 2015). Front. Oncol. 11, 705299 (2021).
pubmed: 34513687
pmcid: 8426630
doi: 10.3389/fonc.2021.705299
Horgan, A. M., Amir, E., Walter, T. & Knox, J. J. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J. Clin. Oncol. 30, 1934–1940 (2012).
pubmed: 22529261
doi: 10.1200/JCO.2011.40.5381
Saluja, S. S., Nekarakanti, P. K., Mishra, P. K., Srivastava, A. & Singh, K. Prospective randomized controlled trial comparing adjuvant chemotherapy vs. no chemotherapy for patients with carcinoma of gallbladder undergoing curative resection. J. Gastrointest. Surg. 26, 398–407 (2022).
pubmed: 34545545
doi: 10.1007/s11605-021-05143-6
Takada, T. et al. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer 95, 1685–1695 (2002).
pubmed: 12365016
doi: 10.1002/cncr.10831
Edeline, J. et al. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): a randomized phase III study. J. Clin. Oncol. 37, 658–667 (2019).
pubmed: 30707660
doi: 10.1200/JCO.18.00050
Primrose, J. N. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 20, 663–673 (2019).
pubmed: 30922733
doi: 10.1016/S1470-2045(18)30915-X
Stein, A. et al. Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial)-a randomized, multidisciplinary, multinational phase III trial. BMC Cancer 15, 564 (2015).
pubmed: 26228433
pmcid: 4520064
doi: 10.1186/s12885-015-1498-0
Ben-Josef, E. et al. SWOG S0809: a phase II Intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J. Clin. Oncol. 33, 2617–2622 (2015).
pubmed: 25964250
doi: 10.1200/JCO.2014.60.2219
Shroff, R. T. et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J. Clin. Oncol. 37, 1015–1027 (2019).
pubmed: 30856044
doi: 10.1200/JCO.18.02178
Valle, J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362, 1273–1281 (2010).
pubmed: 20375404
doi: 10.1056/NEJMoa0908721
Sharma, A. et al. Best supportive care compared with chemotherapy for unresectable gall bladder cancer: a randomized controlled study. J. Clin. Oncol. 28, 4581–4586 (2010).
pubmed: 20855823
doi: 10.1200/JCO.2010.29.3605
Sharma, A. et al. Modified gemcitabine and oxaliplatin or gemcitabine + cisplatin in unresectable gallbladder cancer: results of a phase III randomised controlled trial. Eur. J. Cancer 123, 162–170 (2019).
pubmed: 31707181
doi: 10.1016/j.ejca.2019.10.004
Azizi, A. A., Lamarca, A., McNamara, M. G. & Valle, J. W. Chemotherapy for advanced gallbladder cancer (GBC): a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 163, 103328 (2021).
pubmed: 33862244
doi: 10.1016/j.critrevonc.2021.103328
Sahai, V. et al. Nab-paclitaxel and gemcitabine as first-line treatment of advanced or metastatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol. 4, 1707–1712 (2018).
pubmed: 30178032
pmcid: 6440720
doi: 10.1001/jamaoncol.2018.3277
Shroff, R. T. et al. Gemcitabine, Cisplatin, and nab-Paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol. 5, 824–830 (2019). Important clinical trial showing the effect of conventional chemotherapy in patients with GBC.
pubmed: 30998813
pmcid: 6567834
doi: 10.1001/jamaoncol.2019.0270
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03768414 (2021).
Oh, D.-Y. et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid. 1, EVIDoa2200015 (2022).
doi: 10.1056/EVIDoa2200015
Lamarca, A. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 22, 690–701 (2021).
pubmed: 33798493
pmcid: 8082275
doi: 10.1016/S1470-2045(21)00027-9
Ying, J. & Chen, J. Combination versus mono-therapy as salvage treatment for advanced biliary tract cancer: A comprehensive meta-analysis of published data. Crit. Rev. Oncol. Hematol. 139, 134–142 (2019).
pubmed: 30979533
doi: 10.1016/j.critrevonc.2019.01.001
Javle, M. et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 22, 1290–1300 (2021). This article shows the importance of HER2-targeted treatment in advanced GBC.
pubmed: 34339623
doi: 10.1016/S1470-2045(21)00336-3
Meric-Bernstam, F. et al. Zanidatamab (ZW25) in HER2-positive biliary tract cancers (BTCs): results from a phase I study. J. Clin. Oncol. 39, 299–299 (2021).
doi: 10.1200/JCO.2021.39.3_suppl.299
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04466891 (2022).
Ngo-Huang, A. et al. Home-based exercise prehabilitation during preoperative treatment for pancreatic cancer is associated with improvement in physical function and quality of life. Integr. Cancer Ther. 18, 1534735419894061 (2019).
pubmed: 31858837
pmcid: 7050956
doi: 10.1177/1534735419894061
Butte, J. M. et al. Residual disease predicts outcomes after definitive resection for incidental gallbladder cancer. J. Am. Coll. Surg. 219, 416–429 (2014).
pubmed: 25087941
pmcid: 4143454
doi: 10.1016/j.jamcollsurg.2014.01.069
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04559139 (2022).
Sirohi, B. et al. Neoadjuvant chemotherapy in patients with locally advanced gallbladder cancer. Future Oncol. 11, 1501–1509 (2015).
pubmed: 25963427
doi: 10.2217/fon.14.308
Chaudhari, V. A. et al. Outcome of neoadjuvant chemotherapy in “locally advanced/borderline resectable” gallbladder cancer: the need to define indications. HPB 20, 841–847 (2018).
pubmed: 29706425
doi: 10.1016/j.hpb.2018.03.008
Howell, D. et al. Patient-reported outcomes in routine cancer clinical practice: a scoping review of use, impact on health outcomes, and implementation factors. Ann. Oncol. 26, 1846–1858 (2015).
pubmed: 25888610
doi: 10.1093/annonc/mdv181
Cella, D. et al. Validity of the FACT Hepatobiliary (FACT-Hep) questionnaire for assessing disease-related symptoms and health-related quality of life in patients with metastatic pancreatic cancer. Qual. Life Res. 22, 1105–1112 (2013).
pubmed: 22678353
doi: 10.1007/s11136-012-0217-4
Friend, E. et al. Development of a questionnaire (EORTC module) to measure quality of life in patients with cholangiocarcinoma and gallbladder cancer, the EORTC QLQ-BIL21. Br. J. Cancer 104, 587–592 (2011).
pubmed: 21266979
pmcid: 3049590
doi: 10.1038/sj.bjc.6606086
Kaupp-Roberts, S. D. et al. Validation of the EORTC QLQ-BIL21 questionnaire for measuring quality of life in patients with cholangiocarcinoma and cancer of the gallbladder. Br. J. Cancer 115, 1032–1038 (2016).
pubmed: 27673364
pmcid: 5117782
doi: 10.1038/bjc.2016.284
Montazeri, A. Quality of life data as prognostic indicators of survival in cancer patients: an overview of the literature from 1982 to 2008. Health Qual. Life Outcomes 7, 102 (2009).
pubmed: 20030832
pmcid: 2805623
doi: 10.1186/1477-7525-7-102
Yoo, C. et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol. 22, 1560–1572 (2021).
pubmed: 34656226
doi: 10.1016/S1470-2045(21)00486-1
Zhu, A. X. et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7, 1669–1677 (2021).
pubmed: 34554208
doi: 10.1001/jamaoncol.2021.3836
Jackson, S. S. et al. Associations between reproductive factors and biliary tract cancers in women from the Biliary Tract Cancers Pooling Project. J. Hepatol. 73, 863–872 (2020).
pubmed: 32437829
pmcid: 7901003
doi: 10.1016/j.jhep.2020.04.046
Jackson, S. S. et al. Anthropometric risk factors for cancers of the biliary tract in the biliary tract cancers pooling project. Cancer Res. 79, 3973–3982 (2019).
pubmed: 31113819
pmcid: 6759233
doi: 10.1158/0008-5472.CAN-19-0459
McGee, E. E. et al. Smoking, alcohol, and biliary tract cancer risk: a pooling project of 26 prospective studies. J. Natl Cancer Inst. 111, 1263–1278 (2019).
pubmed: 31127946
pmcid: 6910180
doi: 10.1093/jnci/djz103
Koshiol, J. et al. The Chile biliary longitudinal study (Chile BiLS): a gallstone cohort. Am. J. Epidemiol. 190, 196–206 (2021).
pubmed: 33524121
doi: 10.1093/aje/kwaa199
Koshiol, J. et al. Association of inflammatory and other immune markers with gallbladder cancer: results from two independent case-control studies. Cytokine 83, 217–225 (2016).
pubmed: 27173614
pmcid: 4876019
doi: 10.1016/j.cyto.2016.05.003
Koshiol, J. et al. Circulating inflammatory proteins and gallbladder cancer: potential for risk stratification to improve prioritization for cholecystectomy in high-risk regions. Cancer Epidemiol. 54, 25–30 (2018).
pubmed: 29554539
pmcid: 5971138
doi: 10.1016/j.canep.2018.03.004
Liu, Z. et al. Circulating levels of inflammatory proteins and survival in patients with gallbladder cancer. Sci. Rep. 8, 5671 (2018).
pubmed: 29618736
pmcid: 5884817
doi: 10.1038/s41598-018-23848-8
Liu, Z. et al. Association of circulating inflammation proteins and gallstone disease. J. Gastroenterol. Hepatol. 33, 1920–1924 (2018).
pubmed: 29671891
pmcid: 7576672
doi: 10.1111/jgh.14265
Hofmann, J. N. et al. Intra-individual variability over time in serum cytokine levels among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. Cytokine 56, 145–148 (2011).
pubmed: 21764327
pmcid: 3185107
doi: 10.1016/j.cyto.2011.06.012
Koshiol, J. et al. Distribution of dysplasia and cancer in the gallbladder: an analysis from a high cancer-risk population. Hum. Pathol. 82, 87–94 (2018).
pubmed: 30036595
pmcid: 8579273
doi: 10.1016/j.humpath.2018.07.015
Memis, B. et al. Prognosis of T2 gallbladder carcinomas: an analysis of 326 cases highlights a prognosis better than the current impression in the west, but incomparably worse than what is reported in Asia [abstract]. Mod. Pathol. 29 (Suppl. 2), 438–451 (2016).
Akkas, G. et al. Pathologic diagnosis as the reason for wide discrepancies in the literature regarding the incidence and behavior of T1 gallbladder cancer (GBC): an analysis of 473 GBC and comparison with literature [abstract]. Lab. Invest. 95 (Suppl. 1), 438A–439A (2015).
Ebata, T. et al. Review of hepatopancreatoduodenectomy for biliary cancer: an extended radical approach of Japanese origin. J. Hepatobiliary Pancreat. Sci. 21, 550–555 (2014).
pubmed: 24464987
doi: 10.1002/jhbp.80
Kang, S., El-Rayes, B. F. & Akce, M. Evolving role of immunotherapy in advanced biliary tract cancers. Cancers 14, 1748 (2022).
pubmed: 35406520
pmcid: 8996885
doi: 10.3390/cancers14071748
Morizane, C. et al. Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial. Ann. Oncol. 30, 1950–1958 (2019).
pubmed: 31566666
doi: 10.1093/annonc/mdz402
Lee, J. et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 13, 181–188 (2012).
pubmed: 22192731
doi: 10.1016/S1470-2045(11)70301-1
Zheng, Y. et al. A randomised phase II study of second-line XELIRI regimen versus irinotecan monotherapy in advanced biliary tract cancer patients progressed on gemcitabine and cisplatin. Br. J. Cancer 119, 291–295 (2018).
pubmed: 29955136
pmcid: 6068158
doi: 10.1038/s41416-018-0138-2
Demols, A. et al. Regorafenib after failure of gemcitabine and platinum-based chemotherapy for locally advanced/metastatic biliary tumors: REACHIN, a randomized, double-blind, phase II trial. Ann. Oncol. 31, 1169–1177 (2020).
pubmed: 32464280
doi: 10.1016/j.annonc.2020.05.018
Javle, M. M. et al. Varlitinib plus capecitabine in second-line advanced biliary tract cancer: a randomized, phase II study (TreeTopp). ESMO Open 7, 100314 (2022).
pubmed: 34922298
doi: 10.1016/j.esmoop.2021.100314
Harding, J. J. et al. Targeting HER2 (ERBB2) mutation-positive advanced biliary tract cancers with neratinib: results from the phase II SUMMIT ‘basket’ trial. J. Clin. Oncol. 39, 320–320 (2021).
doi: 10.1200/JCO.2021.39.3_suppl.320
Malka, D. et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 15, 819–828 (2014).
pubmed: 24852116
pmcid: 6372099
doi: 10.1016/S1470-2045(14)70212-8
Lee, S. et al. Phase II study of ramucirumab in advanced biliary tract cancer previously treated by gemcitabine-based chemotherapy. Clin. Cancer Res. 28, 2229–2236 (2022).
pubmed: 35312753
doi: 10.1158/1078-0432.CCR-21-3548
Valle, J. W. et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol. 16, 967–978 (2015).
pubmed: 26179201
pmcid: 4648082
doi: 10.1016/S1470-2045(15)00139-4
Bang, Y.-J. et al. Pembrolizumab (pembro) for advanced biliary adenocarcinoma: Results from the KEYNOTE-028 (KN028) and KEYNOTE-158 (KN158) basket studies. J. Clin. Oncol. 37, 4079–4079 (2019).
doi: 10.1200/JCO.2019.37.15_suppl.4079
Kim, R. D. et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 6, 888–894 (2020).
pubmed: 32352498
doi: 10.1001/jamaoncol.2020.0930
Kelley, R. K. et al. Pembrolizumab (PEM) plus granulocyte macrophage colony stimulating factor (GM-CSF) in advanced biliary cancers (ABC): final outcomes of a phase 2 trial. J. Clin. Oncol. 40, 444–444 (2022).
doi: 10.1200/JCO.2022.40.4_suppl.444
Klein, O. et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 6, 1405–1409 (2020).
pubmed: 32729929
pmcid: 7393585
doi: 10.1001/jamaoncol.2020.2814
Ueno, M. et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol. Hepatol. 4, 611–621 (2019).
pubmed: 31109808
doi: 10.1016/S2468-1253(19)30086-X
Ioka, T. et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J. Clin. Oncol. 37, 387–387 (2019).
doi: 10.1200/JCO.2019.37.4_suppl.387
International Agency for Research on Cancer. Estimated age-standardized incidence rates (World) in 2020, gallbladder, both sexes, all ages. WHO https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=12&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include_nmsc=0&include_nmsc_other=0&projection=natural-earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&show_ranking=0&rotate=%255B10%252C0%255D (2020).