Circular RNAs to predict clinical outcome after cardiac arrest.
Biomarkers
Circular RNAs
Out-of-hospital cardiac arrest
Prognostication
Journal
Intensive care medicine experimental
ISSN: 2197-425X
Titre abrégé: Intensive Care Med Exp
Pays: Germany
ID NLM: 101645149
Informations de publication
Date de publication:
28 Oct 2022
28 Oct 2022
Historique:
received:
23
05
2022
accepted:
05
10
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
28
10
2022
Statut:
epublish
Résumé
Cardiac arrest (CA) represents the third leading cause of death worldwide. Among patients resuscitated and admitted to hospital, death and severe neurological sequelae are frequent but difficult to predict. Blood biomarkers offer clinicians the potential to improve prognostication. Previous studies suggest that circulating non-coding RNAs constitute a reservoir of novel biomarkers. Therefore, this study aims to identify circulating circular RNAs (circRNAs) associated with clinical outcome after CA. Whole blood samples obtained 48 h after return of spontaneous circulation in 588 survivors from CA enrolled in the Target Temperature Management trial (TTM) were used in this study. Whole transcriptome RNA sequencing in 2 groups of 23 sex-matched patients identified 28 circRNAs associated with neurological outcome and survival. The circRNA circNFAT5 was selected for further analysis using quantitative PCR. In the TTM-trial (n = 542), circNFAT5 was upregulated in patients with poor outcome as compared to patients with good neurological outcome (p < 0.001). This increase was independent of TTM regimen and sex. The adjusted odds ratio of circNFAT5 to predict neurological outcome was 1.39 [1.07-1.83] (OR [95% confidence interval]). CircNFAT5 predicted 6-month survival with an adjusted hazard ratio of 1.31 [1.13-1.52]. We identified circulating circRNAs associated with clinical outcome after CA, among which circNFAT5 may have potential to aid in predicting neurological outcome and survival when used in combination with established biomarkers of CA.
Sections du résumé
BACKGROUND
BACKGROUND
Cardiac arrest (CA) represents the third leading cause of death worldwide. Among patients resuscitated and admitted to hospital, death and severe neurological sequelae are frequent but difficult to predict. Blood biomarkers offer clinicians the potential to improve prognostication. Previous studies suggest that circulating non-coding RNAs constitute a reservoir of novel biomarkers. Therefore, this study aims to identify circulating circular RNAs (circRNAs) associated with clinical outcome after CA.
RESULTS
RESULTS
Whole blood samples obtained 48 h after return of spontaneous circulation in 588 survivors from CA enrolled in the Target Temperature Management trial (TTM) were used in this study. Whole transcriptome RNA sequencing in 2 groups of 23 sex-matched patients identified 28 circRNAs associated with neurological outcome and survival. The circRNA circNFAT5 was selected for further analysis using quantitative PCR. In the TTM-trial (n = 542), circNFAT5 was upregulated in patients with poor outcome as compared to patients with good neurological outcome (p < 0.001). This increase was independent of TTM regimen and sex. The adjusted odds ratio of circNFAT5 to predict neurological outcome was 1.39 [1.07-1.83] (OR [95% confidence interval]). CircNFAT5 predicted 6-month survival with an adjusted hazard ratio of 1.31 [1.13-1.52].
CONCLUSION
CONCLUSIONS
We identified circulating circRNAs associated with clinical outcome after CA, among which circNFAT5 may have potential to aid in predicting neurological outcome and survival when used in combination with established biomarkers of CA.
Identifiants
pubmed: 36303007
doi: 10.1186/s40635-022-00470-7
pii: 10.1186/s40635-022-00470-7
pmc: PMC9613847
doi:
Types de publication
Journal Article
Langues
eng
Pagination
41Subventions
Organisme : Fonds National de la Recherche Luxembourg
ID : C14/BM/8225223
Organisme : Fonds National de la Recherche Luxembourg
ID : C17/BM/11613033
Organisme : Fonds National de la Recherche Luxembourg
ID : grant # C17/BM/11613033
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, Sanders P (2019) Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ 28:6–14
pubmed: 30482683
Grasner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G, Bein B, Bottiger BW, Rosell-Ortiz F, Nolan JP, Bossaert L, Perkins GD (2021) European resuscitation council guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation 161:61–79
pubmed: 33773833
Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, Neumar RW, O’Neil BJ, Paxton JH, Silvers SM, White RD, Yannopoulos D, Donnino MW (2015) Part 7: adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132:S444-464
pubmed: 26472995
Ryoo SM, Jeon SB, Sohn CH, Ahn S, Han C, Lee BK, Lee DH, Kim SH, Donnino MW, Kim WY, Korean Hypothermia Network I (2015) Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: multicenter retrospective cohort study. Crit Care Med 43:2370–2377
pubmed: 26284621
Karapetkova M, Koenig MA, Jia X (2016) Early prognostication markers in cardiac arrest patients treated with hypothermia. Eur J Neurol 23:476–488
pubmed: 26228521
Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, Gasche Y, Wanscher M, Cronberg T, Friberg H, Wetterslev J, Pellis T, Kuiper M, Gilson G, Nielsen N, Investigators TT-T (2015) Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol 65:2104–2114
pubmed: 25975474
Luescher T, Mueller J, Isenschmid C, Kalt J, Rasiah R, Tondorf T, Gamp M, Becker C, Sutter R, Tisljar K, Schuetz P, Marsch S, Hunziker S (2019) Neuron-specific enolase (NSE) improves clinical risk scores for prediction of neurological outcome and death in cardiac arrest patients: results from a prospective trial. Resuscitation 142:50–60
pubmed: 31306716
Streitberger KJ, Leithner C, Wattenberg M, Tonner PH, Hasslacher J, Joannidis M, Pellis T, Di Luca E, Fodisch M, Krannich A, Ploner CJ, Storm C (2017) Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: a multicenter study on 1,053 patients. Crit Care Med 45:1145–1151
pubmed: 28426467
Moseby-Knappe M, Mattsson N, Nielsen N, Zetterberg H, Blennow K, Dankiewicz J, Dragancea I, Friberg H, Lilja G, Insel PS, Rylander C, Westhall E, Kjaergaard J, Wise MP, Hassager C, Kuiper MA, Stammet P, Wanscher MCJ, Wetterslev J, Erlinge D, Horn J, Pellis T, Cronberg T (2019) Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol 76:64–71
pubmed: 30383090
Stammet P, Dankiewicz J, Nielsen N, Fays F, Collignon O, Hassager C, Wanscher M, Unden J, Wetterslev J, Pellis T, Aneman A, Hovdenes J, Wise MP, Gilson G, Erlinge D, Horn J, Cronberg T, Kuiper M, Kjaergaard J, Gasche Y, Devaux Y, Friberg H, Target Temperature Management after Out-of-Hospital Cardiac Arrest trial i (2017) Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. Crit Care 21:153
pubmed: 28629472
pmcid: 5477102
Kleissner M, Sramko M, Kohoutek J, Kautzner J, Kettner J (2021) Serum S100 protein is a reliable predictor of brain injury after out-of-hospital cardiac arrest: a cohort study. Front Cardiovasc Med 8:624825
pubmed: 33634170
pmcid: 7900190
Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H (2009) Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation 80:784–789
pubmed: 19467754
Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S (2005) Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 24:119–123
pubmed: 16044081
Burghuber OC, Worofka B, Schernthaner G, Vetter N, Neumann M, Dudczak R, Kuzmits R (1990) Serum neuron-specific enolase is a useful tumor marker for small cell lung cancer. Cancer 65:1386–1390
pubmed: 2155054
DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD (1996) Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia 37:606–609
pubmed: 8681891
Lu D, Thum T (2019) RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 16:661–674
pubmed: 31186539
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C, Devaux Y, Action EU-CC (2020) Regulatory RNAs in heart failure. Circulation 141:313–328
pubmed: 31986093
pmcid: 7012349
Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274
pubmed: 30078734
pmcid: 6116471
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338
pubmed: 23446348
Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17:679–692
pubmed: 27739534
pmcid: 5565156
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157
pubmed: 23249747
pmcid: 3543092
Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461
pubmed: 24811520
pmcid: 4121655
Aufiero S, Reckman YJ, Pinto YM, Creemers EE (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16:503–514
pubmed: 30952956
Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, Tan SH, Chan EWL, Bhattamisra SK, Rajendran R, Candasamy M (2019) The roles of circular RNAs in human development and diseases. Biomed Pharmacother 111:198–208
pubmed: 30583227
Vausort M, Salgado-Somoza A, Zhang L, Leszek P, Scholz M, Teren A, Burkhardt R, Thiery J, Wagner DR, Devaux Y (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68:1247–1248
pubmed: 27609688
Salgado-Somoza A, Zhang L, Vausort M, Devaux Y (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36
pubmed: 29159270
pmcid: 5684093
Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Dimmeler S, Squire I, Cardiolinc n (2017) Circular RNAs in heart failure. Eur J Heart Fail 19:701–709
pubmed: 28345158
Gratz C, Bui MLU, Thaqi G, Kirchner B, Loewe RP, Pfaffl MW (2022) Obtaining reliable RT-qPCR results in molecular diagnostics-MIQE goals and pitfalls for transcriptional biomarker discovery. Life (Basel) 12
Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Investigators TTMT (2013) Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 369:2197–2206
pubmed: 24237006
Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, Rylander C, Wise MP, Oddo M, Cariou A, Belohlavek J, Hovdenes J, Saxena M, Kirkegaard H, Young PJ, Pelosi P, Storm C, Taccone FS, Joannidis M, Callaway C, Eastwood GM, Morgan MPG, Nordberg P, Erlinge D, Nichol AD, Chew MS, Hollenberg J, Thomas M, Bewley J, Sweet K, Grejs AM, Christensen S, Haenggi M, Levis A, Lundin A, During J, Schmidbauer S, Keeble TR, Karamasis GV, Schrag C, Faessler E, Smid O, Otahal M, Maggiorini M, Wendel Garcia PD, Jaubert P, Cole JM, Solar M, Borgquist O, Leithner C, Abed-Maillard S, Navarra L, Annborn M, Unden J, Brunetti I, Awad A, McGuigan P, Bjorkholt Olsen R, Cassina T, Vignon P, Langeland H, Lange T, Friberg H, Nielsen N, Investigators TTMT (2021) Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 384:2283–2294
pubmed: 34133859
Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, Brunetti I, Cranshaw J, Cronberg T, Edqvist K, Erlinge D, Gasche Y, Glover G, Hassager C, Horn J, Hovdenes J, Johnsson J, Kjaergaard J, Kuiper M, Langorgen J, Macken L, Martinell L, Martner P, Pellis T, Pelosi P, Petersen P, Persson S, Rundgren M, Saxena M, Svensson R, Stammet P, Thoren A, Unden J, Walden A, Wallskog J, Wanscher M, Wise MP, Wyon N, Aneman A, Friberg H (2012) Target temperature Management after out-of-hospital cardiac arrest–a randomized, parallel-group, assessor-blinded clinical trial–rationale and design. Am Heart J 163:541–548
pubmed: 22520518
Nielsen N, Winkel P, Cronberg T, Erlinge D, Friberg H, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Wetterslev J (2013) Detailed statistical analysis plan for the target temperature management after out-of-hospital cardiac arrest trial. Trials 14:300
pubmed: 24044764
pmcid: 3848451
Devaux Y, Dankiewicz J, Salgado-Somoza A, Stammet P, Collignon O, Gilje P, Gidlof O, Zhang L, Vausort M, Hassager C, Wise MP, Kuiper M, Friberg H, Cronberg T, Erlinge D, Nielsen N, for Target Temperature Management After Cardiac Arrest Trial I (2016) Association of circulating MicroRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial. JAMA Cardiol 1:305–313
pubmed: 27438111
Devaux Y, Salgado-Somoza A, Dankiewicz J, Boileau A, Stammet P, Schritz A, Zhang L, Vausort M, Gilje P, Erlinge D, Hassager C, Wise MP, Kuiper M, Friberg H, Nielsen N, investigators TT-t (2017) Incremental value of circulating MiR-122-5p to predict outcome after out of hospital cardiac arrest. Theranostics 7:2555–2564
pubmed: 28819446
pmcid: 5558552
Shao T, Pan YH, Xiong XD (2021) Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids 23:369–376
pubmed: 33425494
Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490
pubmed: 32366901
Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, Li H (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414:301–309
pubmed: 29174799
Ghanbarian AT, Hurst LD (2015) Neighboring genes show correlated evolution in gene expression. Mol Biol Evol 32:1748–1766
pubmed: 25743543
pmcid: 4476153
Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91:243–248
pubmed: 18082363
O’Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK (2007) A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 120:149–159
pubmed: 17164296
Adachi A, Takahashi T, Ogata T, Imoto-Tsubakimoto H, Nakanishi N, Ueyama T, Matsubara H (2012) NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation. Biochem Biophys Res Commun 426:317–323
pubmed: 22935419
Loyher ML, Mutin M, Woo SK, Kwon HM, Tappaz ML (2004) Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain. Neuroscience 124:89–104
pubmed: 14960342
Trama J, Lu Q, Hawley RG, Ho SN (2000) The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner. J Immunol 165:4884–4894
pubmed: 11046013
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15:545–552
pubmed: 19412173
Ma P, Zha S, Shen X, Zhao Y, Li L, Yang L, Lei M, Liu W (2019) NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium. Cell Commun Signal 17:102
pubmed: 31429763
pmcid: 6701070
Neuhofer W (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 11:584–590
pubmed: 21629436
pmcid: 3078683
Cen L, Xing F, Xu L, Cao Y (2020) Potential role of gene regulator NFAT5 in the pathogenesis of diabetes mellitus. J Diabetes Res 2020:6927429
pubmed: 33015193
pmcid: 7512074