Open avenues for carotenoid biofortification of plant tissues.
biofortification
biotechnology
carotenoids
plastidial isoprenoids
vitamin A
Journal
Plant communications
ISSN: 2590-3462
Titre abrégé: Plant Commun
Pays: China
ID NLM: 101769147
Informations de publication
Date de publication:
09 01 2023
09 01 2023
Historique:
received:
29
08
2022
revised:
18
10
2022
accepted:
21
10
2022
pubmed:
29
10
2022
medline:
13
1
2023
entrez:
28
10
2022
Statut:
ppublish
Résumé
Plant carotenoids are plastidial isoprenoids that function as photoprotectants, pigments, and precursors of apocarotenoids such as the hormones abscisic acid and strigolactones. Humans do not produce carotenoids but need to obtain them from their diet as precursors of retinoids, including vitamin A. Carotenoids also provide numerous other health benefits. Multiple attempts to improve the carotenoid profile of different crops have been carried out by manipulating carotenoid biosynthesis, degradation, and/or storage. Here, we will focus on open questions and emerging subjects related to the use of biotechnology for carotenoid biofortification. After impressive achievements, new efforts should be directed to extend the use of genome-editing technologies to overcome regulatory constraints and improve consumer acceptance of the carotenoid-enriched products. Another challenge is to prevent off-target effects like those resulting from altered hormone levels and metabolic homeostasis. Research on biofortification of green tissues should also look for new ways to deal with the negative impact that altered carotenoid contents may have on photosynthesis. Once a carotenoid-enriched product has been obtained, additional effort should be devoted to confirming that carotenoid intake from the engineered food is also improved. This work involves ensuring post-harvest stability and assessing bioaccessibility of the biofortified product to confirm that release of carotenoids from the food matrix has not been negatively affected. Successfully addressing these challenges will ensure new milestones in carotenoid biotechnology and biofortification.
Identifiants
pubmed: 36303429
pii: S2590-3462(22)00303-0
doi: 10.1016/j.xplc.2022.100466
pmc: PMC9860184
pii:
doi:
Substances chimiques
Carotenoids
36-88-4
Vitamin A
11103-57-4
Terpenes
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100466Informations de copyright
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Références
Plant Cell. 2012 Feb;24(2):395-414
pubmed: 22374394
New Phytol. 2015 Apr;206(1):268-280
pubmed: 25414007
Plant Commun. 2019 Dec 24;1(1):100017
pubmed: 33404538
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11040-5
pubmed: 27621466
Front Plant Sci. 2019 Oct 30;10:1250
pubmed: 31736986
Planta. 2015 Jul;242(1):353-63
pubmed: 25963517
Hortic Res. 2015 Aug 26;2:15036
pubmed: 26504578
Curr Biol. 2017 Oct 9;27(19):3034-3041.e3
pubmed: 28943084
Methods Enzymol. 2022;674:329-341
pubmed: 36008011
Plant Physiol. 2022 Oct 27;190(3):1579-1587
pubmed: 35976141
Plant Biotechnol J. 2019 Jan;17(1):33-49
pubmed: 29729208
Methods Enzymol. 2022;671:1-29
pubmed: 35878974
Front Plant Sci. 2022 Jul 11;13:936089
pubmed: 35898224
Plant Biotechnol J. 2021 May;19(5):1008-1021
pubmed: 33314563
J Agric Food Chem. 2008 Feb 27;56(4):1408-14
pubmed: 18237137
Nat Commun. 2020 Mar 4;11(1):1178
pubmed: 32132530
Metab Eng. 2020 May;59:76-86
pubmed: 32006663
Arch Biochem Biophys. 2018 Aug 15;652:18-26
pubmed: 29885291
Science. 2010 Apr 30;328(5978):624-7
pubmed: 20431015
Plant Biotechnol J. 2016 Jan;14(1):160-8
pubmed: 25846059
Mol Plant. 2018 Jan 8;11(1):58-74
pubmed: 28958604
Metab Eng. 2022 Mar;70:166-180
pubmed: 35031492
Plant Physiol. 2017 Jan;173(1):376-389
pubmed: 27837090
Prog Lipid Res. 2021 Nov;84:101128
pubmed: 34530006
Nutr Rev. 2014 May;72(5):289-307
pubmed: 24689451
Foods. 2020 Jun 21;9(6):
pubmed: 32575819
J Sci Food Agric. 2010 Jan 15;90(1):2-12
pubmed: 20355006
Front Plant Sci. 2018 Apr 26;9:559
pubmed: 29755497
Plant Biotechnol J. 2020 May;18(5):1185-1199
pubmed: 31646753
J Nutr. 2008 Oct;138(10):1835-9
pubmed: 18806089
Prog Lipid Res. 2013 Oct;52(4):539-61
pubmed: 23896007
Plant J. 2021 Jan;105(2):351-375
pubmed: 33258195
Transgenic Res. 2014 Apr;23(2):303-15
pubmed: 24287848
Curr Opin Plant Biol. 2017 Jun;37:49-55
pubmed: 28411584
Prog Lipid Res. 2018 Apr;70:62-93
pubmed: 29679619
FASEB J. 1995 Dec;9(15):1551-8
pubmed: 8529834
Nat Genet. 2019 Jun;51(6):1044-1051
pubmed: 31086351
Trends Biotechnol. 2021 Sep;39(9):857-860
pubmed: 33384170
Plant Cell Rep. 2019 Jul;38(7):803-818
pubmed: 31079194
Nat Rev Mol Cell Biol. 2020 Nov;21(11):661-677
pubmed: 32973356
J Exp Bot. 2013 Oct;64(13):3999-4009
pubmed: 23846876
Abiotech. 2021 May 18;2(3):191-214
pubmed: 36303886
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Nov;1865(11):158664
pubmed: 32068105
PLoS One. 2009 Jul 28;4(7):e6373
pubmed: 19636414
Annu Rev Plant Biol. 2006;57:711-38
pubmed: 16669779
Nature. 2005 Jul 7;436(7047):134-7
pubmed: 16001075
Plant Physiol. 2002 Nov;130(3):1079-89
pubmed: 12427975
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21796-21803
pubmed: 32817419
Curr Opin Plant Biol. 2022 Apr;66:102190
pubmed: 35183926
Photosynth Res. 1995 Mar;43(3):273-82
pubmed: 24306850
Sci Rep. 2017 Jan 31;7:41645
pubmed: 28139696
Mol Plant. 2012 Mar;5(2):339-52
pubmed: 22155949
Arabidopsis Book. 2012;10:e0158
pubmed: 22582030
Curr Opin Biotechnol. 2017 Apr;44:169-180
pubmed: 28254681
Curr Opin Plant Biol. 2022 Apr;66:102185
pubmed: 35183927
Trends Plant Sci. 2020 May;25(5):501-512
pubmed: 31956035
Mol Nutr Food Res. 2019 Aug;63(15):e1801045
pubmed: 31189216
Science. 2000 Jan 14;287(5451):303-5
pubmed: 10634784
New Phytol. 2022 Oct 28;:
pubmed: 36307969
Biotechnol J. 2022 May;17(5):e2100328
pubmed: 35157358
Nat Biotechnol. 2005 Apr;23(4):482-7
pubmed: 15793573
Annu Rev Food Sci Technol. 2021 Mar 25;12:433-460
pubmed: 33467905