Machine Learning Analyses Reveal Circadian Features Predictive of Risk for Sleep Disturbance.

chronotype circadian clock circadian misalignment machine learning sleep disturbance sleep quality

Journal

Nature and science of sleep
ISSN: 1179-1608
Titre abrégé: Nat Sci Sleep
Pays: New Zealand
ID NLM: 101537767

Informations de publication

Date de publication:
2022
Historique:
received: 08 07 2022
accepted: 21 09 2022
entrez: 28 10 2022
pubmed: 29 10 2022
medline: 29 10 2022
Statut: epublish

Résumé

Sleep disturbances often co-occur with mood disorders, with poor sleep quality affecting over a quarter of the global population. Recent advances in sleep and circadian biology suggest poor sleep quality is linked to disruptions in circadian rhythms, including significant associations between sleep features and circadian clock gene variants. Here, we employ machine learning techniques, combined with statistical approaches, in a deeply phenotyped population to explore associations between clock genotypes, circadian phenotypes (diurnal preference and circadian phase), and risk for sleep disturbance symptoms. As found in previous studies, evening chronotypes report high levels of sleep disturbance symptoms. Using molecular chronotyping by measuring circadian phase, we extend these findings and show that individuals with a mismatch between circadian phase and diurnal preference report higher levels of sleep disturbance. We also report novel synergistic interactions in genotype combinations of Our results indicate that both direct and indirect mechanisms may impact sleep quality; sex-specific clock genotype combinations predictive of sleep disturbance may represent direct effects of clock gene function on downstream pathways involved in sleep physiology. In addition, the mediation of clock gene effects on sleep disturbance indicates circadian influences on the quality of sleep. Unraveling the complex molecular mechanisms at the intersection of circadian and sleep physiology is vital for understanding how genetic and behavioral factors influencing circadian phenotypes impact sleep quality. Such studies provide potential targets for further study and inform efforts to improve non-invasive therapeutics for sleep disorders.

Identifiants

pubmed: 36304418
doi: 10.2147/NSS.S379888
pii: 379888
pmc: PMC9595061
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1887-1900

Informations de copyright

© 2022 Overton et al.

Déclaration de conflit d'intérêts

The authors declare no competing interests.

Références

J Sleep Res. 2015 Oct;24(5):476-93
pubmed: 26059855
Sleep Med. 2017 Jan;29:20-22
pubmed: 28153210
J Biol Rhythms. 2018 Jun;33(3):318-336
pubmed: 29614896
Neuropsychopharmacology. 2010 May;35(6):1279-89
pubmed: 20072116
EMBO Rep. 2001 Apr;2(4):342-6
pubmed: 11306557
J Neural Transm (Vienna). 2012 Oct;119(10):1133-45
pubmed: 22538398
PLoS One. 2012;7(3):e31867
pubmed: 22427812
PLoS One. 2010 Feb 24;5(2):e9407
pubmed: 20195522
J Affect Disord. 2019 May 1;250:425-431
pubmed: 30878655
Sleep. 2003 Jun 15;26(4):413-5
pubmed: 12841365
Cell. 2017 Apr 6;169(2):203-215.e13
pubmed: 28388406
Front Neurol. 2017 Feb 07;8:30
pubmed: 28223962
Neurosci Lett. 1997 Nov 28;238(1-2):5-8
pubmed: 9464641
Int J Chronobiol. 1976;4(2):97-110
pubmed: 1027738
Chronobiol Int. 2011 Nov;28(9):771-8
pubmed: 21895489
Biochem J. 2007 Mar 15;402(3):525-36
pubmed: 17115977
Sleep. 2021 May 14;44(5):
pubmed: 33582815
BMC Bioinformatics. 2008 Oct 29;9:461
pubmed: 18959772
PLoS One. 2010 Feb 18;5(2):e9259
pubmed: 20174623
Sci Rep. 2014 Sep 09;4:6309
pubmed: 25201053
Chronobiol Int. 2015;32(9):1183-91
pubmed: 26375049
Ann Med. 2007;39(3):229-38
pubmed: 17457720
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
pubmed: 16723010
Sci Rep. 2017 Aug 31;7(1):9893
pubmed: 28860482
J Sleep Res. 2016 Apr;25(2):131-43
pubmed: 26762182
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1536-44
pubmed: 26903630
Behav Sleep Med. 2011 Dec 28;10(1):6-24
pubmed: 22250775
Hum Mol Genet. 2017 Oct 1;26(R2):R128-R138
pubmed: 28977444
Transl Psychiatry. 2020 Jan 23;10(1):28
pubmed: 32066704
J Affect Disord. 2018 Jul;234:351-357
pubmed: 29128257
Sleep Med Rev. 2018 Aug;40:109-126
pubmed: 29248294
Nature. 2002 Aug 29;418(6901):935-41
pubmed: 12198538
Chronobiol Int. 2012 Mar;29(2):131-46
pubmed: 22324552
J Biol Rhythms. 2010 Dec;25(6):460-8
pubmed: 21135162
PLoS One. 2013 Aug 08;8(8):e71450
pubmed: 23951166
Transl Psychiatry. 2016 Mar 01;6:e748
pubmed: 26926884
Front Psychol. 2020 Aug 26;11:2028
pubmed: 32982844
Sci Rep. 2017 Jul 31;7(1):6967
pubmed: 28761043
Sleep Med Rev. 2010 Jun;14(3):151-60
pubmed: 19716732
Sleep. 2021 Feb 12;44(2):
pubmed: 33049062
J Biol Rhythms. 2012 Dec;27(6):443-52
pubmed: 23223370
BMC Neurosci. 2002 Dec 20;3:20
pubmed: 12495442
Eur J Neurosci. 2014 Nov;40(10):3504-11
pubmed: 25196050
J Cell Mol Med. 2019 Apr;23(4):2324-2332
pubmed: 30734486
J Affect Disord. 2014 Mar;157:100-3
pubmed: 24581835
Biol Chem. 2003 May;384(5):711-9
pubmed: 12817467

Auteurs

Rebeccah Overton (R)

Department of Biology, Colgate University, Hamilton, NY, USA.

Aziz Zafar (A)

Department of Biology, Colgate University, Hamilton, NY, USA.
Department of Mathematics, Colgate University, Hamilton, NY, USA.

Ziad Attia (Z)

Department of Biology, Colgate University, Hamilton, NY, USA.
Department of Computer Science, Colgate University, Hamilton, NY, USA.

Ahmet Ay (A)

Department of Biology, Colgate University, Hamilton, NY, USA.
Department of Mathematics, Colgate University, Hamilton, NY, USA.

Krista K Ingram (KK)

Department of Biology, Colgate University, Hamilton, NY, USA.

Classifications MeSH