Changes in length judgments caused by rotation of the contextual distractor.

Distractor rotation Length illusion Perceptual positional shift Spatial summation

Journal

Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384

Informations de publication

Date de publication:
Jan 2023
Historique:
accepted: 10 10 2022
pubmed: 29 10 2022
medline: 10 1 2023
entrez: 28 10 2022
Statut: ppublish

Résumé

In the present study, we tested the applicability of the computational model of the illusion of interrupted spatial extent (Bulatov, Marma, & Bulatova, Attention, Perception, & Psychophysics, 82, 2714-2727, 2020) to account for the psychophysical data collected with three-dot stimuli containing a cross-shaped contextual distractor. In different series of experiments, the illusion magnitude changes caused by the rotation of distractors with different values of the internal angle (45°, 75°, and 90°) were quantitatively determined. It was shown that the data obtained for all modifications of stimuli can be rather well approximated by model functions proportional to the sum of the absolute values of cosines. A good agreement between theoretical calculations and experimental results supports the suggestion that the perceptual displacement of the stimulus terminators, which occurs due to the processes of local integration of neural activity, may be one of the main causes of the illusion investigated.

Identifiants

pubmed: 36307748
doi: 10.3758/s13414-022-02596-y
pii: 10.3758/s13414-022-02596-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

196-208

Informations de copyright

© 2022. The Psychonomic Society, Inc.

Références

Barrow, H. G., & Tenenbaum, J. M. (1981). Interpreting line drawings as three-dimensional surfaces. Artificial Intelligence, 17, 75–116.
doi: 10.1016/0004-3702(81)90021-7
Baud-Bovy, G., & Soechting, J. (2001). Visual localization of the center of mass of compact, asymmetric, two-dimensional shapes. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 692–706.
Blakemore, C., Carpenter, R. H. S., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228, 37–39.
doi: 10.1038/228037a0
Bremmer, F., Kaminiarz, A., Klingenhoefer, S., & Churan, J. (2016). Decoding target distance and saccade amplitude from population activity in the macaque Lateral Intraparietal Area (LIP). Frontiers in Integrative Neuroscience, 10, 30. https://doi.org/10.3389/fnint.2016.00030
doi: 10.3389/fnint.2016.00030
Bulatov, A., Bertulis, A., Bulatova, N., & Loginovich, Y. (2009). Centroid extraction and illusions of extent with different contextual flanks. Acta Neurobiologiae Experimentalis, 69, 504–525.
Bulatov, A., Bertulis, A., Gutauskas, A., Mickiene, L., & Kadžiene, G. (2010). Center-of-mass alterations and visual illusions of extent. Biological Cybernetics, 102, 475–487.
doi: 10.1007/s00422-010-0379-5
Bulatov, A., Bertulis, A., Mickienė, L., Surkys, T., & Bielevičius, A. (2011). Contextual flanks' tilting and magnitude of illusion of extent. Vision Research, 51(1), 58–64.
doi: 10.1016/j.visres.2010.09.033
Bulatov, A., Bulatova, N., Mickienė, L., & Bielevičius, A. (2013). Perceptual mislocalization of a single set of the Müller-Lyer wings. Acta Neurobiologiae Experimentalis, 73, 417–429.
Bulatov, A., Bulatova, N., Loginovich, Y., & Surkys, T. (2015a). Illusion of extent evoked by closed two-dimensional shapes. Biological Cybernetics, 109, 163–178.
doi: 10.1007/s00422-014-0633-3
Bulatov, A., Bulatova, A., Surkys, T., & Mickienė, L. (2015b). A quantitative analysis of illusion magnitude changes induced by rotation of contextual distractor. Acta Neurobiologiae Experimentalis, 75, 238–251.
Bulatov, A., Bulatova, N., Surkys, T., & Mickienė, L. (2017). An effect of continuous contextual filling in the filled-space illusion. Acta Neurobiologiae Experimentalis, 77, 157–167.
doi: 10.21307/ane-2017-048
Bulatov, A., Marma, V., Bulatova, N., & Mickienė, L. (2019). The filled-space illusion induced by a single-dot distractor. Acta Neurobiologiae Experimentalis, 79, 39–52.
Bulatov, A., Marma, V., & Bulatova, N. (2020). Two-dimensional profile of the region of distractors’ influence on visual length judgments. Attention, Perception, & Psychophysics, 82, 2714–2727.
doi: 10.3758/s13414-020-02002-5
Bulatov, A., Bulatova, N., & Diržius, E. (2021). Quantitative examination of an unconventional form of the filled-space illusion. Attention, Perception, & Psychophysics, 83, 2136–2150.
doi: 10.3758/s13414-021-02304-2
Bulatov, A., Bulatova, N., Marma, V., & Kučinskas, L. (2022). Quantitative study of asymmetry in the manifestation of the wings-in and wings-out versions of the Müller-Lyer illusion. Attention, Perception, & Psychophysics, 84, 560–575.
doi: 10.3758/s13414-021-02412-z
Cao, Y.-J., Lin, C., Pan, Y.-J., & Zhao, H.-J. (2019). Application of the center–surround mechanism to contour detection. Multimedia Tools and Applications, 78, 25121–25141.
doi: 10.1007/s11042-019-7722-1
Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.
doi: 10.1038/nrn3136
Carrasco, M., Figuero, J. G., & Willen, J. D. (1986). A test of the spatial-frequency explanation of the Muller-Lyer illusion. Perception, 15, 553–562.
doi: 10.1068/p150553
Chen, C.-Y., Hoffmann, K.-P., Distler, C., & Hafed, Z. M. (2019). The Foveal Visual Representation of the Primate Superior Colliculus. Current Biology, 29, 2109–2119.
doi: 10.1016/j.cub.2019.05.040
Coren, S., & Porac, C. (1983). The creation and reversal of the Muller-Lyer illusion through attentional manipulation. Perception, 12, 49–54.
doi: 10.1068/p120049
Day, R. H. (2006). Two principles of perception revealed by geometrical illusions. Australian Journal of Psychology, 58(3), 123–129.
doi: 10.1080/00049530601087504
De Beeck, H. P. O., & Vogels, R. (2000). Spatial Sensitivity of Macaque Inferior Temporal Neurons. The Journal of Comparative Neurology, 426, 505–518.
doi: 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M
Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in human visual cortex. Neuroimage, 39(2), 647–660.
doi: 10.1016/j.neuroimage.2007.09.034
Fang, T., Fan, Y., & Wu, W. (2020). Salient contour detection on the basis of the mechanism of bilateral asymmetric receptive fields. Signal, Image and Video Processing, 14, 1461–1469. https://doi.org/10.1007/s11760-020-01689-1
doi: 10.1007/s11760-020-01689-1
Ganz, L. (1966). Mechanism of the figural aftereffects. Psychological Review, 73, 128–150.
doi: 10.1037/h0022952
Gillam, B. (1998). Illusions at Century’s End. In J. Hochberg (Ed.), Perception and Cognition at Century’s End (pp. 95–136). Academic Press.
doi: 10.1016/B978-012301160-2/50007-1
Gillam, B. (2017). An Analysis of Theoretical Approaches to Geometrical-Optical Illusions. In A. Shapiro & D. Todorović (Eds.), Oxford compendium of visual illusion (pp. 64–73). Oxford University Press.
doi: 10.1093/acprof:oso/9780199794607.003.0004
Goryo, K., Robinson, J. O., & Wilson, J. A. (1984). Selective looking and the Muller-Lyer illusion: The effect of changes in the focus of attention on the Muller-Lyer illusion. Perception, 13, 647–654.
doi: 10.1068/p130647
Graf, A. B., & Andersen, R. A. (2014). Inferring eye position from populations of lateral intraparietal neurons. Elife, 3, e02813. https://doi.org/10.7554/eLife.02813
doi: 10.7554/eLife.02813
Gregory, R. L. (1968). Visual illusions. Scientific American, 219, 66–67.
doi: 10.1038/scientificamerican1168-66
Hirsch, J., & Mjolsness, E. (1992). A center-of-mass computation describes the precision of random dot displacement discrimination. Vision Research, 32, 335–346.
doi: 10.1016/0042-6989(92)90143-7
Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43, 171–216.
doi: 10.1006/cogp.2001.0755
Krauzlis, R. J., Goffart, L., & Hafed, Z. M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1718), 20160205.
doi: 10.1098/rstb.2016.0205
Levi, D. M. (2008). Crowding – An essential bottleneck for object recognition: A mini-review. Vision Research, 48, 635–654.
doi: 10.1016/j.visres.2007.12.009
Marma, V., Bulatov, A., & Bulatova, N. (2020). Dependence of the filled-space illusion on the size and location of contextual distractors. Acta Neurobiologiae Experimentalis, 80, 139–159.
doi: 10.21307/ane-2020-014
McGraw, P. V., Whitaker, D., Badcock, D. R., & Skillen, J. (2003). Neither here nor there: localizing conflicting visual attributes. Journal of Vision, 3, 265–273.
doi: 10.1167/3.4.2
Mikellidou, K., & Thompson, P. (2014). Crossing the line: estimations of line length in the Oppel-Kundt illusion. Journal of Vision, 14(20), 1–10.
Morgan, M. J., & Glennerster, A. (1991). Efficiency of locating centers of dot-clusters by human observers. Vision Research, 31, 2075–2083.
doi: 10.1016/0042-6989(91)90165-2
Morgan, M. J., Hole, G. J., & Glennerster, A. (1990). Biases and sensitivities in geometrical illusions. Vision Research, 30, 1793–1810.
doi: 10.1016/0042-6989(90)90160-M
Morgan, M. J., Melmoth, D., & Solomon, J. A. (2013). Linking hypotheses underlying Class A and Class B methods. Visual Neuroscience, 30, 197–206.
doi: 10.1017/S095252381300045X
Nakayama, K., & Mackaben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631–1647.
doi: 10.1016/0042-6989(89)90144-2
Nanay, B. (2009). Shape constancy, not size constancy: a (partial) explanation for the Müller-Lyer illusion. In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31
Olsen, S. R., Bhandawat, V., & Wilson, R. I. (2010). Divisive normalization in olfactory population codes. Neuron, 66, 287–299.
doi: 10.1016/j.neuron.2010.04.009
Ottes, F. P., Gisbergen, J. A. M., & Eggermont, J. J. (1986). Visuomotor fields of the superior colliculus: a quantitative model. Vision Research, 26, 857–873.
doi: 10.1016/0042-6989(86)90144-6
Pelli, D. G., & Farell, B. (2010). Psychophysical methods. In M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, & E. V. Stryland (Eds.), Handbook of Optics, Third Edition, Volume III: Vision and Vision Optics (pp. 3.1–3.12). McGraw-Hill.
Poltoratski, S., & Tong, F. (2020). Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling. Journal of Neuroscience, 40(16), 3292–3303.
doi: 10.1523/JNEUROSCI.2377-19.2020
Predebon, J. (2004). Selective attention and asymmetry in the Müller-Lyer illusion. Psychonomic Bulletin & Review, 11, 916–920.
doi: 10.3758/BF03196721
Redding, G. M., & Vinson, D. W. (2010). Virtual and drawing structures for the Müller-Lyer illusions. Attention, Perception, & Psychophysics, 72(5), 1350–1366.
doi: 10.3758/APP.72.5.1350
Redding, G. M., Kramen, A. J., & Hankins, J. L. (1997). The Müller-Lyer illusion as a consequence of picture perception. In M. A. Schmuckler & J. M. Kennedy (Eds.), Studies in perception and action IV (pp. 11–14). Lawrence Erlbaum Associates.
Rentschler, I., Hilz, R., & Grimm, W. (1975). Processing of positional information in the human visual system. Nature, 253, 444–445.
doi: 10.1038/253444a0
Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61, 168–185.
doi: 10.1016/j.neuron.2009.01.002
Sagi, D., & Julesz, B. (1986). Enhanced detection in the aperture of focal attention during simple shape discrimination tasks. Nature, 321, 693–695.
doi: 10.1038/321693a0
Sereno, A. B., & Lehky, S. R. (2011). Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways. Frontiers in Computational Neuroscience, 4, 159. https://doi.org/10.3389/fncom.2010.00159
doi: 10.3389/fncom.2010.00159
Silva, M. F., Brascamp, J. W., Ferreira, S., Castelo-Branco, M., Dumoulin, S. O., & Harvey, B. M. (2018). Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex. NeuroImage, 167, 41–52.
doi: 10.1016/j.neuroimage.2017.11.021
Strasburger, H., & Malania, M. (2013). Source confusion is a major cause of crowding. Journal of Vision, 13(24), 1–20.
Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. Journal of Vision, 11(13), 1–82.
Taylor, J. R. (1996). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd ed.). University Science Book.
Tsal, Y. (1984). A Mueller-Lyer illusion induced by selective attention. Quarterly Journal of Experimental Psychology, 36A, 319–333.
doi: 10.1080/14640748408402162
Vokoun, C. R., Huang, X., Jackson, M. B., & Basso, M. A. (2014). Response normalization in the superficial layers of the superior colliculus as a possible mechanism for saccadic averaging. The Journal of Neuroscience, 34(23), 7976–7987.
doi: 10.1523/JNEUROSCI.3022-13.2014
Wackermann, J. (2017). The Oppel-Kundt illusion. In A. Shapiro & D. Todorović (Eds.), Oxford compendium of visual illusion (pp. 303–307). Oxford University Press.
doi: 10.1093/acprof:oso/9780199794607.003.0035
Wallis, T. S. A., & Bex, P. J. (2012). Image correlates of crowding in natural scenes. Journal of Vision, 12(6), 1–19.
Watt, R. J., & Morgan, M. J. (1985). A theory of the primitive spatial code in human vision. Vision Research, 25, 1661–1674.
doi: 10.1016/0042-6989(85)90138-5
Wei, H., Lang, B., & Zuo, Q. (2013). Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing, 103, 247–262.
doi: 10.1016/j.neucom.2012.09.027
Welbourne, L. E., Morland, A. B., & Wade, A. R. (2018). Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI. NeuroImage, 167, 84–94.
doi: 10.1016/j.neuroimage.2017.11.022
Whitaker, D., McGraw, P. V., Pacey, I., & Barrett, B. T. (1996). Centroid analysis predicts visual localization of first- and second-order stimuli. Vision Research, 36, 2957–2970.
doi: 10.1016/0042-6989(96)00031-4
Whitney, D., & Levi, D. M. (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15, 160–168.
doi: 10.1016/j.tics.2011.02.005
Wright, J. M., Morris, A. P., & Krekelberg, B. (2011). Weighted integration of visual position information. Journal of Vision, 11(14), 1–16.
doi: 10.1167/11.14.11

Auteurs

Aleksandr Bulatov (A)

Laboratory of Visual Neurophysiology, Lithuanian University of Health Sciences, Kaunas, Lithuania. aleksandr.bulatov@lsmuni.lt.
Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania. aleksandr.bulatov@lsmuni.lt.

Natalija Bulatova (N)

Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania.

Edgaras Diržius (E)

Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania.

Lina Mickienė (L)

Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH