Brucella ceti and Brucella pinnipedialis genome characterization unveils genetic features that highlight their zoonotic potential.

Brucella ceti Brucella pinnipedialis brucellosis genome annotation marine mammals virulence factors

Journal

MicrobiologyOpen
ISSN: 2045-8827
Titre abrégé: Microbiologyopen
Pays: England
ID NLM: 101588314

Informations de publication

Date de publication:
10 2022
Historique:
revised: 07 10 2022
received: 13 05 2022
accepted: 07 10 2022
entrez: 31 10 2022
pubmed: 1 11 2022
medline: 2 11 2022
Statut: ppublish

Résumé

The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.

Identifiants

pubmed: 36314752
doi: 10.1002/mbo3.1329
pmc: PMC9597259
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1329

Informations de copyright

© 2022 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Références

PLoS One. 2013 Dec 20;8(12):e84861
pubmed: 24376851
Front Cell Infect Microbiol. 2012 Feb 06;2:3
pubmed: 22919595
Microbiol Resour Announc. 2020 Sep 24;9(39):
pubmed: 32972946
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D325-8
pubmed: 15608208
Microbiol Resour Announc. 2021 May 6;10(18):
pubmed: 33958398
Front Cell Infect Microbiol. 2013 Jul 08;3:28
pubmed: 23847770
Microorganisms. 2021 Dec 31;10(1):
pubmed: 35056531
Environ Pollut. 2021 Sep 15;285:117672
pubmed: 34380232
Dis Aquat Organ. 2021 Jul 15;145:191-195
pubmed: 34263734
J Wildl Dis. 2017 Oct;53(4):864-868
pubmed: 28715292
Front Microbiol. 2018 Dec 04;9:2963
pubmed: 30564213
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
PLoS Pathog. 2009 Jun;5(6):e1000487
pubmed: 19557163
Front Microbiol. 2016 Feb 19;7:173
pubmed: 26925045
Methods Mol Biol. 2021;2242:59-68
pubmed: 33961217
Infect Immun. 2007 Jan;75(1):379-89
pubmed: 17088356
mBio. 2012 Aug 28;3(5):e00246-12
pubmed: 22930339
FEMS Microbiol Lett. 2012 May;330(2):81-9
pubmed: 22339775
BMC Bioinformatics. 2010 Dec 10;11:595
pubmed: 21143983
J Wildl Dis. 2017 Apr;53(2):215-227
pubmed: 28151078
Dis Aquat Organ. 2021 May 27;144:231-235
pubmed: 34042070
BMC Bioinformatics. 2015 Mar 12;16:79
pubmed: 25888166
PLoS Negl Trop Dis. 2020 May 11;14(5):e0008164
pubmed: 32392223
J Bacteriol. 2009 Apr;191(8):2530-40
pubmed: 19201794
Pol J Microbiol. 2018 Jun 30;67(2):151-161
pubmed: 30015453
Front Vet Sci. 2018 Jan 31;5:8
pubmed: 29445729
Microbiology (Reading). 2002 Feb;148(Pt 2):353-360
pubmed: 11832499
BMC Microbiol. 2008 Jan 24;8:17
pubmed: 18218072
PLoS Pathog. 2009 Nov;5(11):e1000660
pubmed: 19915718
J Wildl Dis. 2020 Jul;56(3):698-701
pubmed: 32216678
Proteomics. 2019 Feb;19(3):e1800317
pubmed: 30520262
PLoS One. 2017 Sep 21;12(9):e0184758
pubmed: 28934239
Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525
pubmed: 31665441
J Wildl Dis. 2017 Oct;53(4):850-853
pubmed: 28715291
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Int J Syst Evol Microbiol. 2007 Nov;57(Pt 11):2688-2693
pubmed: 17978241
Nat Immunol. 2005 Jun;6(6):618-25
pubmed: 15880113
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Front Microbiol. 2021 Jul 08;12:700734
pubmed: 34305866
J Vet Med Sci. 2020 Jun 24;82(6):754-758
pubmed: 32336742
J Vet Diagn Invest. 2014 Jul;26(4):507-512
pubmed: 24803576
Cell Microbiol. 2011 Jul;13(7):1044-58
pubmed: 21501366
J Vet Diagn Invest. 1994 Oct;6(4):448-52
pubmed: 7858024
Dis Aquat Organ. 2018 Mar 22;128(1):13-20
pubmed: 29565250
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1544-9
pubmed: 11830669
Nucleic Acids Res. 2014 Jan;42(Database issue):D737-43
pubmed: 24304895
Appl Environ Microbiol. 2015 Jan;81(2):578-86
pubmed: 25381237
Vet Microbiol. 2008 Nov 25;132(1-2):181-9
pubmed: 18514443
Mol Biol Evol. 2022 Jul 2;39(7):
pubmed: 35801562
PeerJ. 2019 May 31;7:e6995
pubmed: 31183253
Curr Biol. 2019 Oct 21;29(20):R1094-R1103
pubmed: 31639358
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551
pubmed: 33125081
Front Microbiol. 2014 May 13;5:213
pubmed: 24860561
Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21
pubmed: 21062823
J Bacteriol. 2009 Jun;191(11):3569-79
pubmed: 19346311
Curr Opin Microbiol. 2008 Oct;11(5):472-7
pubmed: 19086349
J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500
pubmed: 32780112
Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21
pubmed: 27141966
Vet Rec. 1994 Apr 2;134(14):359
pubmed: 8017020
Vet Res. 2011 Aug 05;42:93
pubmed: 21819589
Infect Immun. 1993 Dec;61(12):4962-71
pubmed: 8225570
J Bacteriol. 2014 Mar;196(5):920-30
pubmed: 24336939
BMC Evol Biol. 2011 Jul 11;11:200
pubmed: 21745361
Nucleic Acids Res. 2016 Jan 4;44(D1):D73-80
pubmed: 26578580
PLoS One. 2020 Oct 2;15(10):e0240178
pubmed: 33007030
J Vet Med Sci. 2016 Oct 1;78(9):1457-1464
pubmed: 27320816
Microb Pathog. 2022 May;166:105536
pubmed: 35439555
J Clin Microbiol. 2006 Dec;44(12):4363-70
pubmed: 17035490
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
Dis Aquat Organ. 2013 Sep 3;105(3):175-81
pubmed: 23999701
Bioinformatics. 2013 Apr 15;29(8):1072-5
pubmed: 23422339
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
Vet Pathol. 2017 Sep;54(5):838-845
pubmed: 28494705
Genome Announc. 2017 Sep 14;5(37):
pubmed: 28912327
Zhonghua Liu Xing Bing Xue Za Zhi. 2019 Jun 10;40(6):676-681
pubmed: 31238618
Nucleic Acids Res. 2000 Jan 1;28(1):33-6
pubmed: 10592175
J Wildl Dis. 2013 Oct;49(4):802-15
pubmed: 24502708
PLoS One. 2016 Jul 14;11(7):e0159272
pubmed: 27415626
PLoS One. 2014 Nov 19;9(11):e112963
pubmed: 25409509
Emerg Infect Dis. 2008 Mar;14(3):517-8
pubmed: 18325282
Genome Biol. 2020 Jul 22;21(1):180
pubmed: 32698896
Vet Rec. 1999 Apr 24;144(17):483
pubmed: 10358880
J Wildl Dis. 2017 Jul;53(3):572-576
pubmed: 28418765
Bioinformatics. 2015 Sep 1;31(17):2877-8
pubmed: 25913206
Microbiol Immunol. 2022 Feb;66(2):52-58
pubmed: 34779039
J Comp Pathol. 2021 Jan;182:1-8
pubmed: 33494901
Annu Rev Microbiol. 2011;65:523-41
pubmed: 21939378
Dis Aquat Organ. 2009 Sep 23;86(2):143-57
pubmed: 19902843
Genome Biol. 2016 Jun 20;17(1):132
pubmed: 27323842
Nat Struct Biol. 2000 Mar;7(3):215-9
pubmed: 10700280
Emerg Infect Dis. 2003 Apr;9(4):485-8
pubmed: 12702232
J Environ Manage. 2021 Sep 1;293:112878
pubmed: 34091140
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Microorganisms. 2019 Nov 22;7(12):
pubmed: 31766725
Dis Aquat Organ. 2022 Feb 24;148:57-72
pubmed: 35200159
Mol Microbiol. 2008 Dec;70(6):1378-96
pubmed: 19019140
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12375-80
pubmed: 12218183
Genome Biol Evol. 2017 Jul 1;9(7):1901-1912
pubmed: 28854602
Clin Infect Dis. 2006 Jan 1;42 Suppl 1:S25-34
pubmed: 16323116
J Wildl Dis. 2018 Jul;54(3):439-449
pubmed: 29697310

Auteurs

Massimiliano Orsini (M)

Istituto Zooprofilattico Sperimentale delle Venezie, Laboratory of Microbial Ecology and Genomics, Legnaro, Italy.

Andrea Ianni (A)

Research Unit in Hygiene, Statistics and Public Health, Campus Bio-Medico di Roma University, Rome, Italy.

Luca Zinzula (L)

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Centro di Educazione Ambientale e alla Sostenibilità (CEAS) Laguna di Nora, Pula, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH