Hydroclimatic vulnerability of peat carbon in the central Congo Basin.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
12 2022
Historique:
received: 01 10 2021
accepted: 27 09 2022
pubmed: 4 11 2022
medline: 15 12 2022
entrez: 3 11 2022
Statut: ppublish

Résumé

The forested swamps of the central Congo Basin store approximately 30 billion metric tonnes of carbon in peat

Identifiants

pubmed: 36323786
doi: 10.1038/s41586-022-05389-3
pii: 10.1038/s41586-022-05389-3
pmc: PMC9729114
doi:

Substances chimiques

Carbon 7440-44-0
Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

277-282

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).
doi: 10.1038/nature21048
Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).
Runge, J. in Large Rivers (ed. Gupta, A.) 293–309 (Wiley, 2008).
Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).
doi: 10.3390/rs12142196
Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2018).
Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 17939 (2019).
doi: 10.1038/s41598-019-53879-8
Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).
doi: 10.1038/s41598-021-88766-8
Sebag, D. et al. Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344–355 (2006).
doi: 10.1111/j.1365-2389.2005.00745.x
Sebag, D. et al. Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma 284, 185–203 (2016).
doi: 10.1016/j.geoderma.2016.08.025
Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).
doi: 10.1007/s10533-018-0531-1
Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).
Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org. Geochem. 5, 283–290 (1984).
doi: 10.1016/0146-6380(84)90016-0
Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).
doi: 10.5194/bg-7-43-2010
Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617–640 (2015).
doi: 10.1002/2014JG002796
Wotzka, H.-P. in Grundlegungen: Beiträge zur europäischen und afrikanischen Archäologie fűr Manfred K. H. Eggert (ed. Wotzka, H.-P.) 271–289 (Francke, 2006).
Saulieu, G. D. et al. Archaeological evidence for population rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. Archéol. Arts 17, 11–32 (2021).
Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).
doi: 10.1146/annurev-earth-042711-105535
Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).
doi: 10.1016/j.quascirev.2013.01.007
Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).
doi: 10.1038/nature03945
Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).
doi: 10.1016/j.palaeo.2016.11.039
Swindles, G. T. et al. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biol. 24, 738–757 (2018).
doi: 10.1111/gcb.13950
Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).
doi: 10.1016/j.quascirev.2011.01.018
Lottes, A. L. & Ziegler, A. M. World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23–37 (1994).
doi: 10.1016/0031-0182(94)90003-5
Moutsamboté, J. M. Ecological, Phytogeographic and Phytosociological Study of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).
Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).
Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401 (2012).
doi: 10.1029/2012GL051500
Morris, P. J., Baird, A. J., Young, D. M. & Swindles, G. T. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Lett. 42, 10,788–10,797 (2015).
doi: 10.1002/2015GL066824
Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).
doi: 10.1002/2016WR019898
Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).
doi: 10.1029/2007GL031898
Collins, J. A. et al. Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).
doi: 10.1038/s41467-017-01454-y
Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl. Acad. Sci. USA 115, 3261–3266 (2018).
doi: 10.1073/pnas.1715336115
Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l'assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris Sér. II 318, 1521–1526 (1994).
Elenga, H. et al. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris Sér. II 323, 403–410 (1996).
Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).
doi: 10.1016/j.yqres.2008.12.002
Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43–59 (2018).
doi: 10.1017/qua.2017.97
Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).
doi: 10.1126/science.1215400
Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: pluridisciplinary analysis and multi-archive reconstruction. Global Planet. Change 192, 103257 (2020).
doi: 10.1016/j.gloplacha.2020.103257
Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).
doi: 10.1038/ngeo2778
Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).
doi: 10.1038/s41561-020-0575-4
Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).
doi: 10.1038/s41561-021-00785-2
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO
doi: 10.5194/essd-9-363-2017
Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).
doi: 10.1038/s41558-019-0512-y
Cook, K. H., Liu, Y. & Vizy, E. K. Congo Basin drying associated with poleward shifts of the African thermal lows. Clim. Dyn. 54, 863–883 (2020).
doi: 10.1007/s00382-019-05033-3
Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).
doi: 10.1073/pnas.2003169118
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
doi: 10.1126/science.aaw7578
García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 585–585 (2021).
doi: 10.1038/s43017-021-00197-1
Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).
doi: 10.1073/pnas.1701090114
Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).
doi: 10.1038/nclimate1907
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
doi: 10.1038/sdata.2017.122
Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
doi: 10.1016/j.catena.2017.09.010
Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).
doi: 10.1029/96EO00259
Blaauw, M. & Christen, J. A. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
doi: 10.1214/ba/1339616472
Blaauw, M. et al. rbacon: age–depth modelling using Bayesian statistics. R package version 2.5.7 (2021); https://cran.r-project.org/web/packages/rbacon/index.html .
Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).
doi: 10.1017/RDC.2020.59
Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).
doi: 10.1017/RDC.2020.41
Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).
doi: 10.5194/bg-17-499-2020
Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).
doi: 10.2307/2265676
Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta 64, 1013–1027 (2000).
doi: 10.1016/S0016-7037(99)00321-X
Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).
doi: 10.5194/bg-9-1479-2012
Biester, H., Knorr, K. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).
doi: 10.5194/bg-11-2691-2014
Leifeld, J., Klein, K. & Wüst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).
doi: 10.1038/s41598-020-64275-y
Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).
doi: 10.1038/s41467-018-06050-2
Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol. Manage. 13, 671–684 (2005).
doi: 10.1007/s11273-005-0965-9
Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 53, 421–437 (1998).
Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111–134 (2001).
doi: 10.2516/ogst:2001013
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327–343 (2003).
doi: 10.1016/S0146-6380(02)00239-5
Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303–1306 (1993).
doi: 10.1016/0146-6380(93)90016-5
Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1334 (1967).
doi: 10.1126/science.156.3780.1322
Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001).
doi: 10.1016/S0016-7037(00)00520-2
Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).
doi: 10.1016/S0277-3791(01)00101-9
Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436–443 (1969).
doi: 10.1073/pnas.64.2.436
Nakagawa, T. et al. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15–24 (1998).
doi: 10.1111/j.1502-3885.1998.tb00864.x
Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260–272 (1973).
doi: 10.2307/2395087
African Plant Database (version 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch .
Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).
Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).
doi: 10.1016/j.quaint.2017.03.046
Stevenson, J. & Haberle, S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, 2005).
Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).
doi: 10.1126/sciadv.1601503
Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).
doi: 10.1038/ngeo2329
Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy in the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
doi: 10.1111/j.2153-3490.1964.tb00181.x
Munksgaard, N. C. et al. Data Descriptor: daily observations of stable isotope ratios of rainfall in the tropics. Sci. Rep. 9, 14419 (2019).
doi: 10.1038/s41598-019-50973-9
Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).
doi: 10.1038/ngeo2739
Zwart, C. et al. The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes 32, 2296–2303 (2018).
doi: 10.1002/hyp.13140
Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 137, 1272–1294 (2009).
doi: 10.1175/2008MWR2525.1
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8, 653–675 (2017).
doi: 10.5194/esd-8-653-2017
International Atomic Energy Agency–World Meteorological Organization Global Network of Isotopes in Precipitation: The GNIP Database (accessed May 2020); https://nucleus.iaea.org/wiser/index.aspx .
Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane production and δ
doi: 10.1080/10256016.2015.1011636
Huang, X., Zhao, B., Wang, K., Hu, Y. & Meyers, P. A. Seasonal variations of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org. Geochem. 118, 15–26 (2018).
doi: 10.1016/j.orggeochem.2018.01.009
Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).
doi: 10.1214/10-AOS799
Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS
doi: 10.1007/s10533-014-0033-8
Matteodo, M. et al. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 330, 41–51 (2018).
doi: 10.1016/j.geoderma.2018.05.011
Malou, O. P. et al. The Rock-Eval
doi: 10.1016/j.agee.2020.107030
Thoumazeau, A. et al. A new in-field indicator to assess the impact of land management on soil carbon dynamics. Geoderma 375, 114496 (2020).
doi: 10.1016/j.geoderma.2020.114496
Cranwell, P. A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79–89 (1981).
doi: 10.1016/0146-6380(81)90002-4
Ofiti, N. O. E. et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 156, 108185 (2021).
doi: 10.1016/j.soilbio.2021.108185
Stuiver, M. & Reimer, P. J. Extended
doi: 10.1017/S0033822200013904

Auteurs

Yannick Garcin (Y)

Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France. garcin@cerege.fr.
Institute of Geosciences, University of Potsdam, Potsdam, Germany. garcin@cerege.fr.

Enno Schefuß (E)

MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. eschefuss@marum.de.

Greta C Dargie (GC)

School of Geography, University of Leeds, Leeds, UK. G.C.Dargie@leeds.ac.uk.

Donna Hawthorne (D)

School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK.

Ian T Lawson (IT)

School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK.

David Sebag (D)

IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, France.
Institute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, Switzerland.

George E Biddulph (GE)

School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK.

Bart Crezee (B)

School of Geography, University of Leeds, Leeds, UK.

Yannick E Bocko (YE)

Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.

Suspense A Ifo (SA)

École Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of the Congo.

Y Emmanuel Mampouya Wenina (YE)

Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.

Mackline Mbemba (M)

École Normale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, Republic of the Congo.

Corneille E N Ewango (CEN)

Faculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the Congo.
Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the Congo.

Ovide Emba (O)

Institut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the Congo.

Pierre Bola (P)

Institut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the Congo.

Joseph Kanyama Tabu (J)

Faculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the Congo.

Genevieve Tyrrell (G)

School of Geography, Geology and the Environment, University of Leicester, Leicester, UK.

Dylan M Young (DM)

School of Geography, University of Leeds, Leeds, UK.

Ghislain Gassier (G)

Aix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France.

Nicholas T Girkin (NT)

School of Water, Energy and Environment, Cranfield University, Bedford, UK.

Christopher H Vane (CH)

British Geological Survey, Centre for Environmental Geochemistry, Keyworth, UK.

Thierry Adatte (T)

Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland.

Andy J Baird (AJ)

School of Geography, University of Leeds, Leeds, UK.

Arnoud Boom (A)

School of Geography, Geology and the Environment, University of Leicester, Leicester, UK.

Pauline Gulliver (P)

NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Glasgow, UK.

Paul J Morris (PJ)

School of Geography, University of Leeds, Leeds, UK.

Susan E Page (SE)

School of Geography, Geology and the Environment, University of Leicester, Leicester, UK.

Sofie Sjögersten (S)

School of Biosciences, University of Nottingham, Nottingham, UK.

Simon L Lewis (SL)

School of Geography, University of Leeds, Leeds, UK. S.L.Lewis@leeds.ac.uk.
Department of Geography, University College London, London, UK. S.L.Lewis@leeds.ac.uk.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring

Classifications MeSH