Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy.
FLASH radiotherapy
medulloblastoma
neurocognition
synaptic integrity
vascular sparing
Journal
Neuro-oncology
ISSN: 1523-5866
Titre abrégé: Neuro Oncol
Pays: England
ID NLM: 100887420
Informations de publication
Date de publication:
04 05 2023
04 05 2023
Historique:
medline:
5
5
2023
pubmed:
6
11
2022
entrez:
5
11
2022
Statut:
ppublish
Résumé
Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.
Sections du résumé
BACKGROUND
Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes.
METHODS
Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements.
RESULTS
The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels.
CONCLUSIONS
Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.
Identifiants
pubmed: 36334265
pii: 6806105
doi: 10.1093/neuonc/noac248
pmc: PMC10158064
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
927-939Subventions
Organisme : NCI NIH HHS
ID : R01 CA254892
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA086862
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA244091
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA078586
Pays : United States
Organisme : NIGMS NIH HHS
ID : P50 GM076516
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA062203
Pays : United States
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
J Neurosci. 2020 Aug 19;40(34):6503-6521
pubmed: 32661024
Radiat Res. 2020 Dec 1;194(6):636-645
pubmed: 32853387
Sci Rep. 2019 Dec 11;9(1):18899
pubmed: 31827187
Radiother Oncol. 2019 Oct;139:34-39
pubmed: 31174897
Antioxid Redox Signal. 2015 Jan 1;22(1):78-91
pubmed: 24949841
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715):
pubmed: 28093547
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10943-10951
pubmed: 31097580
FASEB J. 2006 Mar;20(3):426-33
pubmed: 16507760
Radiat Res. 2020 Dec 1;194(6):625-635
pubmed: 33348373
Cancers (Basel). 2020 Jun 11;12(6):
pubmed: 32545204
Med Phys. 2017 Mar;44(3):1157-1167
pubmed: 28094853
Front Neurol. 2020 Dec 09;11:594672
pubmed: 33362697
Med Phys. 2017 Feb;44(2):725-735
pubmed: 28019660
Clin Cancer Res. 2012 Apr 1;18(7):1954-65
pubmed: 22338017
Nat Neurosci. 2013 May;16(5):552-61
pubmed: 23525042
Front Cell Neurosci. 2014 Nov 03;8:362
pubmed: 25404894
Med Phys. 2018 Feb;45(2):863-874
pubmed: 29206287
Brain Res. 2012 Jan 18;1433:114-26
pubmed: 22153623
Biol Psychiatry. 2012 Mar 15;71(6):496-502
pubmed: 21974785
Neuropsychopharmacology. 2020 Jan;45(2):337-346
pubmed: 31202213
Front Behav Neurosci. 2020 Sep 16;14:535885
pubmed: 33192361
Cancer Res. 2021 Sep 15;81(18):4808-4821
pubmed: 34321243
Cancer Res. 2015 Feb 15;75(4):676-86
pubmed: 25687405
Neurobiol Learn Mem. 2021 Feb;178:107367
pubmed: 33359392
Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1-v100
pubmed: 31675094
Radiother Oncol. 2019 Oct;139:18-22
pubmed: 31303340
Front Neural Circuits. 2020 Apr 02;14:9
pubmed: 32308573
Acta Neuropathol Commun. 2019 Nov 21;7(1):186
pubmed: 31753024
Acta Neuropathol Commun. 2019 Oct 14;7(1):151
pubmed: 31610812
Front Integr Neurosci. 2016 Feb 24;10:8
pubmed: 26941623
Annu Rev Neurosci. 2000;23:649-711
pubmed: 10845078
Brain Imaging Behav. 2019 Apr;13(2):389-395
pubmed: 29572621
Radiother Oncol. 2017 Sep;124(3):365-369
pubmed: 28545957
Sci Rep. 2016 Aug 12;6:31545
pubmed: 27516055
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):1074-9
pubmed: 26755608
Int J Radiat Oncol Biol Phys. 2005 May 1;62(1):279-87
pubmed: 15850934
Nat Commun. 2019 Dec 20;10(1):5816
pubmed: 31862977
Alzheimers Res Ther. 2021 Mar 6;13(1):57
pubmed: 33676561
Clin Cancer Res. 2019 Jan 1;25(1):35-42
pubmed: 29875213
Front Oncol. 2021 Sep 16;11:679701
pubmed: 34604027
eNeuro. 2019 Aug 22;6(4):
pubmed: 31383727
Brain Res. 1975 May 16;89(1):107-19
pubmed: 167909
Free Radic Biol Med. 2022 Jan;178:189-201
pubmed: 34875340
Cancers (Basel). 2020 Jun 24;12(6):
pubmed: 32599789
iScience. 2020 Sep 07;23(9):101542
pubmed: 33083769
Physiol Rev. 2004 Jan;84(1):87-136
pubmed: 14715912
Neuron. 2018 Oct 24;100(2):314-329
pubmed: 30359599
Brain Behav Immun. 2017 Feb;60:1-12
pubmed: 26995317