A one-dimensional model for the pulsating flow of cerebrospinal fluid in the spinal canal.
biological fluid dynamics
Journal
Journal of fluid mechanics
ISSN: 0022-1120
Titre abrégé: J Fluid Mech
Pays: England
ID NLM: 100971395
Informations de publication
Date de publication:
25 May 2022
25 May 2022
Historique:
entrez:
7
11
2022
pubmed:
8
11
2022
medline:
8
11
2022
Statut:
ppublish
Résumé
The monitoring of intracranial pressure (ICP) fluctuations, which is needed in the context of a number of neurological diseases, requires the insertion of pressure sensors, an invasive procedure with considerable risk factors. Intracranial pressure fluctuations drive the wave-like pulsatile motion of cerebrospinal fluid (CSF) along the compliant spinal canal. Systematically derived simplified models relating the ICP fluctuations with the resulting CSF flow rate can be useful in enabling indirect evaluations of the former from non-invasive magnetic resonance imaging (MRI) measurements of the latter. As a preliminary step in enabling these predictive efforts, a model is developed here for the pulsating viscous motion of CSF in the spinal canal, assumed to be a linearly elastic compliant tube of slowly varying section, with a Darcy pressure-loss term included to model the fluid resistance introduced by the
Identifiants
pubmed: 36337071
doi: 10.1017/jfm.2022.215
pmc: PMC9635490
mid: NIHMS1820897
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : NINDS NIH HHS
ID : R01 NS120343
Pays : United States
Déclaration de conflit d'intérêts
Declaration of interests. The authors report no conflict of interest.
Références
Radiology. 1987 Jun;163(3):793-9
pubmed: 3575734
Acta Neurochir (Wien). 2018 Feb;160(2):219-224
pubmed: 29273948
AJNR Am J Neuroradiol. 2019 Jul;40(7):1242-1249
pubmed: 31196863
Acta Neurochir (Wien). 2006 Nov;148(11):1151-6; discussion 1156
pubmed: 17039303
IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8
pubmed: 19174343
Neuroscientist. 2013 Dec;19(6):592-603
pubmed: 23389057
J Biomech. 2015 Jul 16;48(10):2144-54
pubmed: 25888012
AJNR Am J Neuroradiol. 2021 Oct;42(10):1815-1821
pubmed: 34385144
Clin Anat. 2011 Sep;24(6):733-40
pubmed: 21412855
J Biomech Eng. 2012 Feb;134(2):021005
pubmed: 22482672
IEEE Trans Biomed Eng. 2007 Sep;54(9):1552-9
pubmed: 17867347
J Biomech Eng. 2018 Aug 1;140(8):
pubmed: 30003260
J Fluid Mech. 2021 Jun 25;917:
pubmed: 35310826
J Neurosurg. 2006 May;104(5):810-9
pubmed: 16703889
World Neurosurg. 2018 Mar;111:279-290
pubmed: 29269062
J Biomech Eng. 2003 Dec;125(6):852-6
pubmed: 14986410
Commun Biol. 2021 Mar 23;4(1):394
pubmed: 33758352
J Biomech Eng. 2006 Feb;128(1):106-14
pubmed: 16532623
Handb Clin Neurol. 2021;176:71-80
pubmed: 33272411
J R Soc Interface. 2019 Oct 31;16(159):20190572
pubmed: 31640500
J Biomech. 1968 Jul;1(2):127-38
pubmed: 16329300
Fluids Barriers CNS. 2020 May 6;17(1):34
pubmed: 32375853
J Biomech Eng. 2009 Feb;131(2):021010
pubmed: 19102569
Br J Radiol. 1966 Apr;39(460):255-62
pubmed: 5295581
J Biomech Eng. 2003 Dec;125(6):857-63
pubmed: 14986411
Neuroradiology. 1997 Apr;39(4):258-64
pubmed: 9144672
Fluids Barriers CNS. 2011 Jan 18;8(1):5
pubmed: 21349153
Pediatr Neurosurg. 1998 May;28(5):246-51
pubmed: 9732257
World Neurosurg. 2016 Feb;86:186-193.e1
pubmed: 26428326