Bayesian deep learning for error estimation in the analysis of anomalous diffusion.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 11 2022
Historique:
received: 27 07 2022
accepted: 20 10 2022
entrez: 7 11 2022
pubmed: 8 11 2022
medline: 10 11 2022
Statut: epublish

Résumé

Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output.

Identifiants

pubmed: 36344559
doi: 10.1038/s41467-022-34305-6
pii: 10.1038/s41467-022-34305-6
pmc: PMC9640593
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6717

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021109
pubmed: 21928951
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 1):021114
pubmed: 12241157
Nat Commun. 2021 Oct 29;12(1):6253
pubmed: 34716305
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt A):R3023-6
pubmed: 11088869
J Am Stat Assoc. 1949 Sep;44(247):335-41
pubmed: 18139350
J Pers Soc Psychol. 2011 Sep;101(3):620-37
pubmed: 21744977
Entropy (Basel). 2020 Dec 19;22(12):
pubmed: 33352694
Phys Rev E. 2019 Jul;100(1-1):010102
pubmed: 31499844
Proc Natl Acad Sci U S A. 1981 Jun;78(6):3287-91
pubmed: 16593023
Phys Rev Lett. 2004 Aug 13;93(7):078102
pubmed: 15324280
Soft Matter. 2019 Mar 20;15(12):2526-2551
pubmed: 30734041
Adv Biophys. 1986;22:1-94
pubmed: 3551519
Biophys J. 1994 Feb;66(2 Pt 1):394-401
pubmed: 8161693
Sensors (Basel). 2022 Jul 25;22(15):
pubmed: 35898047
Proc AAAI Conf Artif Intell. 2015 Jan;2015:2901-2907
pubmed: 25927013
Biophys J. 2019 Jul 23;117(2):185-192
pubmed: 31280841
Rep Prog Phys. 2013 Apr;76(4):046602
pubmed: 23481518
Annu Rev Biochem. 2019 Jun 20;88:635-659
pubmed: 30359080
Phys Chem Chem Phys. 2014 Nov 28;16(44):24128-64
pubmed: 25297814
Phys Rev Lett. 2009 Oct 30;103(18):180602
pubmed: 19905793
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
Phys Rev Lett. 2006 Mar 10;96(9):098102
pubmed: 16606319
Phys Chem Chem Phys. 2014 Aug 14;16(30):15811-7
pubmed: 24968336
J R Soc Interface. 2008 Aug 6;5(25):813-34
pubmed: 18426776
Phys Rev E. 2020 Sep;102(3-1):032402
pubmed: 33076015
Nature. 2007 Nov 1;450(7166):77-80
pubmed: 17972880
Phys Rev Lett. 2014 Apr 18;112(15):150603
pubmed: 24785018
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31):
pubmed: 34321355
Phys Chem Chem Phys. 2011 Feb 7;13(5):1800-12
pubmed: 21203639
Biophys J. 2001 Oct;81(4):2226-40
pubmed: 11566793
Phys Chem Chem Phys. 2014 May 7;16(17):7686-91
pubmed: 24651929

Auteurs

Henrik Seckler (H)

Institute for Physics & Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.

Ralf Metzler (R)

Institute for Physics & Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany. rmetzler@uni-potsdam.de.
Asia Pacific Centre for Theoretical Physics, Pohang, 37673, Republic of Korea. rmetzler@uni-potsdam.de.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Humans Immunization, Secondary COVID-19 Vaccines COVID-19 SARS-CoV-2

Classifications MeSH