Endocrine resistance and breast cancer plasticity are controlled by CoREST.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
11 2022
Historique:
received: 16 09 2021
accepted: 29 09 2022
pubmed: 8 11 2022
medline: 18 11 2022
entrez: 7 11 2022
Statut: ppublish

Résumé

Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER

Identifiants

pubmed: 36344844
doi: 10.1038/s41594-022-00856-x
pii: 10.1038/s41594-022-00856-x
pmc: PMC9707522
mid: NIHMS1844909
doi:

Substances chimiques

Co-Repressor Proteins 0
Histone Demethylases EC 1.14.11.-
Nerve Tissue Proteins 0
Chromatin 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1122-1135

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM141349
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA240139
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA233945
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121595
Pays : United States
Organisme : NIH HHS
ID : S10 OD030286
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).
pubmed: 31912902 doi: 10.3322/caac.21590
DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451 (2019).
pubmed: 31577379 doi: 10.3322/caac.21583
Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513 (2020).
pubmed: 32289273 pmcid: 7169993 doi: 10.1016/j.ccell.2020.03.009
Patten, D. K. et al. Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer. Nat. Med. 24, 1469–1480 (2018).
pubmed: 30038216 pmcid: 6130800 doi: 10.1038/s41591-018-0091-x
Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).
pubmed: 33033407 doi: 10.1038/s41568-020-00302-4
Zhu, C. et al. A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer. Mol. Cell 75, 791–806 (2019).
pubmed: 31303470 pmcid: 6707877 doi: 10.1016/j.molcel.2019.06.010
Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).
pubmed: 21441907 pmcid: 3088773 doi: 10.1038/nature09906
Garcia-Martinez, L., Zhang, Y., Nakata, Y., Chan, H. L. & Morey, L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun. 12, 1786 (2021).
pubmed: 33741974 pmcid: 7979820 doi: 10.1038/s41467-021-22024-3
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).
pubmed: 20371346 pmcid: 2851638 doi: 10.1016/j.cell.2010.02.027
Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).
pubmed: 31601994 doi: 10.1038/s41573-019-0044-1
Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438 (2018).
pubmed: 30205045 pmcid: 6327853 doi: 10.1016/j.ccell.2018.08.008
Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).
pubmed: 22722193 pmcid: 3383766 doi: 10.1038/nature11143
Berns, E. M. et al. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res. 60, 2155–2162 (2000).
pubmed: 10786679
Abubakar, M. et al. Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. NPJ Breast Cancer 5, 20 (2019).
pubmed: 31372496 pmcid: 6658470 doi: 10.1038/s41523-019-0117-7
Yamashita, H. et al. p53 protein accumulation predicts resistance to endocrine therapy and decreased post-relapse survival in metastatic breast cancer. Breast Cancer Res. 8, R48 (2006).
pubmed: 16869955 pmcid: 1779473 doi: 10.1186/bcr1536
Yamamoto, M. et al. p53 accumulation is a strong predictor of recurrence in estrogen receptor-positive breast cancer patients treated with aromatase inhibitors. Cancer Sci. 105, 81–88 (2014).
pubmed: 24118529 doi: 10.1111/cas.12302
Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019).
pubmed: 31118521 doi: 10.1038/s41586-019-1056-z
Silwal-Pandit, L., Langerod, A. & Borresen-Dale, A. L. TP53 mutations in breast and ovarian cancer. Cold Spring Harb. Perspect. Med. 7, a026252 (2017).
Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).
pubmed: 28810143 pmcid: 5559645 doi: 10.1016/j.ccell.2017.07.005
Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).
pubmed: 16079794 doi: 10.1038/nature04021
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).
pubmed: 15620353 doi: 10.1016/j.cell.2004.12.012
Perillo, B., Tramontano, A., Pezone, A. & Migliaccio, A. LSD1: more than demethylation of histone lysine residues. Exp. Mol. Med 52, 1936–1947 (2020).
pubmed: 33318631 pmcid: 8080763 doi: 10.1038/s12276-020-00542-2
Magliulo, D., Bernardi, R. & Messina, S. Lysine-specific demethylase 1A as a promising target in acute myeloid leukemia. Front Oncol. 8, 255 (2018).
pubmed: 30073149 pmcid: 6060236 doi: 10.3389/fonc.2018.00255
Bennani-Baiti, I. M., Machado, I., Llombart-Bosch, A. & Kovar, H. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum. Pathol. 43, 1300–1307 (2012).
pubmed: 22245111 doi: 10.1016/j.humpath.2011.10.010
Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).
pubmed: 19703393 doi: 10.1016/j.cell.2009.05.050
Wu, Y. et al. The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells. Cell Rep. 5, 224–236 (2013).
pubmed: 24075993 pmcid: 4004762 doi: 10.1016/j.celrep.2013.08.030
Shahbandi, A., Nguyen, H. D. & Jackson, J. G. TP53 mutations and outcomes in breast cancer: reading beyond the headlines. Trends Cancer 6, 98–110 (2020).
pubmed: 32061310 pmcid: 7931175 doi: 10.1016/j.trecan.2020.01.007
Fu, X. et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc. Natl Acad. Sci. USA 113, E6600–E6609 (2016).
pubmed: 27791031 pmcid: 5087040 doi: 10.1073/pnas.1612835113
Jeselsohn, R. et al. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc. Natl Acad. Sci. USA 114, E4482–E4491 (2017).
pubmed: 28507152 pmcid: 5465894 doi: 10.1073/pnas.1620993114
Morrison, G. et al. Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Res. Treat. 144, 263–272 (2014).
pubmed: 24554387 pmcid: 4030601 doi: 10.1007/s10549-014-2878-x
Murphy, C. S., Pink, J. J. & Jordan, V. C. Characterization of a receptor-negative, hormone-nonresponsive clone derived from a T47D human breast cancer cell line kept under estrogen-free conditions. Cancer Res. 50, 7285–7292 (1990).
pubmed: 2224859
Murphy, C. S., Meisner, L. F., Wu, S. Q. & Jordan, V. C. Short- and long-term estrogen deprivation of T47D human breast cancer cells in culture. Eur. J. Cancer Clin. Oncol. 25, 1777–1788 (1989).
pubmed: 2632259 doi: 10.1016/0277-5379(89)90348-9
Inman, J. L., Robertson, C., Mott, J. D. & Bissell, M. J. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142, 1028–1042 (2015).
pubmed: 25758218 doi: 10.1242/dev.087643
Idowu, M. O. et al. CD44
pubmed: 21835433 doi: 10.1016/j.humpath.2011.05.005
Honeth, G. et al. The CD44
pubmed: 18559090 pmcid: 2481503 doi: 10.1186/bcr2108
Fang, Y., Liao, G. & Yu, B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J. Hematol. Oncol. 12, 129 (2019).
pubmed: 31801559 pmcid: 6894138 doi: 10.1186/s13045-019-0811-9
Ravasio, R. et al. Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation. Sci. Adv. 6, eaax2746 (2020).
pubmed: 32284990 pmcid: 7141832 doi: 10.1126/sciadv.aax2746
Anastas, J. N. et al. Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell 36, 528–544 (2019).
pubmed: 31631026 doi: 10.1016/j.ccell.2019.09.005
Kalin, J. H. et al. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat. Commun. 9, 53 (2018).
pubmed: 29302039 pmcid: 5754352 doi: 10.1038/s41467-017-02242-4
Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863 (2010).
pubmed: 20713442 pmcid: 2950538 doi: 10.1128/MCB.00521-10
Luo, H. et al. MOF acetylates the histone demethylase LSD1 to suppress epithelial-to-mesenchymal transition. Cell Rep. 15, 2665–2678 (2016).
pubmed: 27292636 doi: 10.1016/j.celrep.2016.05.050
Zhang, J. et al. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev. 27, 749–766 (2013).
pubmed: 23592795 pmcid: 3639416 doi: 10.1101/gad.210963.112
Liu, J. et al. Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21, e48597 (2020).
pubmed: 31833203 doi: 10.15252/embr.201948597
Bahreini, A. et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res. 19, 60 (2017).
pubmed: 28535794 pmcid: 5442865 doi: 10.1186/s13058-017-0851-4
Fang, R. et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol. Cell 39, 222–233 (2010).
pubmed: 20670891 pmcid: 3518444 doi: 10.1016/j.molcel.2010.07.008
Karytinos, A. et al. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 284, 17775–17782 (2009).
pubmed: 19407342 pmcid: 2719416 doi: 10.1074/jbc.M109.003087
Hatzi, K. et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20, 86–96 (2019).
pubmed: 30538335 doi: 10.1038/s41590-018-0273-1
Grose, R. Epithelial migration: open your eyes to c-Jun. Curr. Biol. 13, R678–R680 (2003).
pubmed: 12956972 doi: 10.1016/S0960-9822(03)00607-9
Sioletic, S. et al. c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J. Pathol. 234, 190–202 (2014).
pubmed: 24852265 pmcid: 4472460
Zhang, Y. et al. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7, 145 (2007).
pubmed: 17672916 pmcid: 1959235 doi: 10.1186/1471-2407-7-145
Kappelmann-Fenzl, M. et al. c-Jun drives melanoma progression in PTEN wild type melanoma cells. Cell Death Dis. 10, 584 (2019).
pubmed: 31378787 pmcid: 6680049 doi: 10.1038/s41419-019-1821-9
Malorni, L. et al. Blockade of AP-1 potentiates endocrine therapy and overcomes resistance. Mol. Cancer Res. 14, 470–481 (2016).
pubmed: 26965145 pmcid: 4867274 doi: 10.1158/1541-7786.MCR-15-0423
Bi, M. et al. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat. Cell Biol. 22, 701–715 (2020).
pubmed: 32424275 pmcid: 7737911 doi: 10.1038/s41556-020-0514-z
Munne, P. M. et al. Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat. Commun. 12, 6967 (2021).
pubmed: 34845227 pmcid: 8630031 doi: 10.1038/s41467-021-27220-9
Gross, K., Wronski, A., Skibinski, A., Phillips, S. & Kuperwasser, C. Cell fate decisions during breast cancer development. J. Dev. Biol. 4, 4 (2016).
pubmed: 27110512 pmcid: 4840277 doi: 10.3390/jdb4010004
Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).
pubmed: 28059767 pmcid: 5367887 doi: 10.1126/science.aah4199
Gao, S. et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat. Genet. 52, 1011–1017 (2020).
pubmed: 32868907 pmcid: 7541538 doi: 10.1038/s41588-020-0681-7
Smith, L. M. et al. cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18, 6063–6070 (1999).
pubmed: 10557095 doi: 10.1038/sj.onc.1202989
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).
pubmed: 20164920 pmcid: 2826709 doi: 10.1038/nature08822
Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361–374 (2007).
pubmed: 17418412 doi: 10.1016/j.ccr.2007.02.007
Shao, J. et al. COP1 and GSK3β cooperate to promote c-Jun degradation and inhibit breast cancer cell tumorigenesis. Neoplasia 15, 1075–1085 (2013).
pubmed: 24027432 pmcid: 3769886 doi: 10.1593/neo.13966
Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009).
pubmed: 19701242 doi: 10.1038/nrc2713
Zhang, X., Jin, B. & Huang, C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr. Cancer Drug Targets 7, 305–316 (2007).
pubmed: 17979625 doi: 10.2174/156800907780809741
Wang, L. et al. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25, 21–36 (2014).
pubmed: 24434208 pmcid: 4004525 doi: 10.1016/j.ccr.2013.12.007
Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).
pubmed: 30842676 doi: 10.1038/s41591-019-0376-8
Sehrawat, A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl Acad. Sci. USA 115, E4179–E4188 (2018).
pubmed: 29581250 pmcid: 5939079 doi: 10.1073/pnas.1719168115
Zhang, Y. et al. The Polycomb protein RING1B enables estrogen-mediated gene expression by promoting enhancer-promoter interaction and R-loop formation. Nucleic Acids Res. 49, 9768–9782 (2021).
pubmed: 34428304 pmcid: 8464076 doi: 10.1093/nar/gkab723
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Aguilan, J. T., Kulej, K. & Sidoli, S. Guide for protein fold change and P value calculation for non-experts in proteomics. Mol. Omics 16, 573–582 (2020).
pubmed: 32968743 doi: 10.1039/D0MO00087F
Yuan, Z. F. et al. EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. J. Proteome Res. 17, 2533–2541 (2018).
pubmed: 29790754 pmcid: 6387837 doi: 10.1021/acs.jproteome.8b00133

Auteurs

Liliana Garcia-Martinez (L)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Andrew M Adams (AM)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Ho Lam Chan (HL)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Yuichiro Nakata (Y)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Natalia Weich (N)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.

Stephanie Stransky (S)

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

Zhao Zhang (Z)

Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Mohamed Alshalalfa (M)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Leonor Sarria (L)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

Brandon A Mahal (BA)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Susan B Kesmodel (SB)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.
Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.

Toni Celià-Terrassa (T)

Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

Zhijie Liu (Z)

Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

Saverio Minucci (S)

Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
Department of Biosciences, University of Milan, Milan, Italy.

Daniel Bilbao (D)

Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Simone Sidoli (S)

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

Ramiro E Verdun (RE)

Sylvester Comprehensive Cancer Center, Miami, FL, USA. rverdun@med.miami.edu.
Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA. rverdun@med.miami.edu.

Lluis Morey (L)

Sylvester Comprehensive Cancer Center, Miami, FL, USA. lmorey@med.miami.edu.
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA. lmorey@med.miami.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH