A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes.

Arvicanthis niloticus Diabetes Diurnal Genome Germline mutation rate Heterozygosity Long-read genome assembly Orthology Positive selection Retrogenes Segmental duplications

Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
08 11 2022
Historique:
received: 10 03 2022
accepted: 29 09 2022
entrez: 7 11 2022
pubmed: 8 11 2022
medline: 10 11 2022
Statut: epublish

Résumé

The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic. We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.

Sections du résumé

BACKGROUND
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
RESULTS
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
CONCLUSIONS
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.

Identifiants

pubmed: 36344967
doi: 10.1186/s12915-022-01427-8
pii: 10.1186/s12915-022-01427-8
pmc: PMC9641963
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

245

Informations de copyright

© 2022. The Author(s).

Références

Consortium MGS, Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.
doi: 10.1038/nature01262
Consortium RGSP, Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–521.
doi: 10.1038/nature02426
Yang C, Zhang G, Toh H, et al. Heterozygosity spectrum: all.makeup.agp. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/K6EY9 .
Yan L, Smale L, Nunez AA. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur J Neurosci. 2020;51:551–66.
pubmed: 30269362 doi: 10.1111/ejn.14172
Kalsbeek A, Verhagen LAW, Schalij I, Foppen E, Saboureau M, Bothorel B, et al. Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci. 2008;27:818–27.
pubmed: 18279365 doi: 10.1111/j.1460-9568.2008.06057.x
Langel J, Ikeno T, Yan L, Nunez AA, Smale L. Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Res. 2018;1700:152–9.
pubmed: 30153458 doi: 10.1016/j.brainres.2018.08.019
Gaillard F, Karten HJ, Sauvé Y. Retinorecipient areas in the diurnal murine rodent Arvicanthis niloticus: a disproportionally large superior colliculus. J Comp Neurol. 2013;521:Spc1.
pubmed: 23559407 doi: 10.1002/cne.23330
Gaillard F, Bonfield S, Gilmour GS, Kuny S, Mema SC, Martin BT, et al. Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). J Comp Neurol. 2008;510:525–38.
pubmed: 18680202 doi: 10.1002/cne.21798
Cederroth CR, Albrecht U, Bass J, et al. Medicine in the Fourth Dimension. Cell Metab. 2019;30:238–50.
pubmed: 31390550 pmcid: 6881776 doi: 10.1016/j.cmet.2019.06.019
Senzota RBM. A case of rodent--ungulate resource partitioning. J Mammal. 1983;64:326–9.
doi: 10.2307/1380569
Bolsinger J, Landstrom M, Pronczuk A, Auerbach A, Hayes KC. Low glycemic load diets protect against metabolic syndrome and Type 2 diabetes mellitus in the male Nile rat. J Nutr Biochem. 2017;42:134–48.
pubmed: 28187365 doi: 10.1016/j.jnutbio.2017.01.007
Toh H, Thomson JA, Jiang P. Maternal high-fiber diet protects offspring against type 2 diabetes. Nutrients. 2020. https://doi.org/10.3390/nu13010094 .
Chaabo F, Pronczuk A, Maslova E, Hayes K. Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome. Nutr Metab. 2010;7:29.
doi: 10.1186/1743-7075-7-29
Preguiça I, Alves A, Nunes S, Gomes P, Fernandes R, Viana SD, et al. Diet-induced rodent models of diabetic peripheral neuropathy, retinopathy and nephropathy. Nutrients. 2020. https://doi.org/10.3390/nu12010250 .
Chao P-C, Li Y, Chang C-H, Shieh JP, Cheng J-T, Cheng K-C. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomed Pharmacother. 2018;101:155–61.
pubmed: 29486333 doi: 10.1016/j.biopha.2018.02.084
Yang K, Gotzmann J, Kuny S, Huang H, Sauvé Y, Chan CB. Five stages of progressive β-cell dysfunction in the laboratory Nile rat model of type 2 diabetes. J Endocrinol. 2016;229:343–56.
pubmed: 27068697 doi: 10.1530/JOE-15-0517
Toh H, Smolentsev A, Bozadjian RV, et al. Vascular changes in diabetic retinopathy-a longitudinal study in the Nile rat. Lab Investig. 2019;99:1547–60.
pubmed: 31101854 doi: 10.1038/s41374-019-0264-3
Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A. Diabetic cataract in the Nile grass rat: a longitudinal phenotypic study of pathology formation. FASEB J. 2021;35:e21593.
pubmed: 33991133 doi: 10.1096/fj.202100353R
Singh J, Yousuf MS, Jones KE, et al. Characterization of the Nile grass rat as a unique model for type 2 diabetic polyneuropathy. J Neuropathol Exp Neurol. 2018;77:469–78.
pubmed: 29718319 doi: 10.1093/jnen/nly030
Packer C. Demographic changes in a colony of Nile grassrats (Arvicanthis niloticus) in Tanzania. J Mammal. 1983;64:159–61.
doi: 10.2307/1380769
Rhie A, McCarthy SA, Fedrigo O, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46.
pubmed: 33911273 pmcid: 8081667 doi: 10.1038/s41586-021-03451-0
Yang C, Zhou Y, Marcus S, et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature. 2021;594:227–33.
pubmed: 33910227 pmcid: 8189906 doi: 10.1038/s41586-021-03535-x
Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4277 .
Howe K, Chow W, Collins J, Pelan S, Pointon D-L, Sims Y, et al. Significantly improving the quality of genome assemblies through curation. Gigascience. 2021. https://doi.org/10.1093/gigascience/giaa153 .
doi: 10.1093/gigascience/giaa153 pubmed: 34927191 pmcid: 8685854
Volobouev VT, Ducroz JF, Aniskin VM, et al. Chromosomal characterization of Arvicanthis species (Rodentia, Murinae) from western and central Africa: implications for taxonomy. Cytogenet Genome Res. 2002;96:250–60.
pubmed: 12438807 doi: 10.1159/000063041
Thybert D, Roller M, Navarro FCP, et al. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res. 2018;28:448–59.
pubmed: 29563166 pmcid: 5880236 doi: 10.1101/gr.234096.117
Lilue J, Doran AG, Fiddes IT, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet. 2018;50:1574–83.
pubmed: 30275530 pmcid: 6205630 doi: 10.1038/s41588-018-0223-8
Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–11.
pubmed: 30395283 doi: 10.1093/nar/gky1053
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics. 2006;22:134–41.
pubmed: 16287941 doi: 10.1093/bioinformatics/bti774
Smit AFA, Hubley R, Green P. RepeatMasker. 1996. http://www.repeatmasker.org . Accessed 23 Sep 2022.
Thibaud-Nissen F, Souvorov A, Murphy T, DiCuccio M, Kitts P. Eukaryotic Genome Annotation Pipeline. In: The NCBI Handbook [Internet]. 2nd edition. 2013. https://www.ncbi.nlm.nih.gov/books/NBK169439/ . Accessed 25 Nov 2021
Jain A, Kihara D. Phylo-PFP: improved automated protein function prediction using phylogenetic distance of distantly related sequences. Bioinformatics. 2019;35:753–9.
pubmed: 30165572 doi: 10.1093/bioinformatics/bty704
Jain A, Kihara D, Toh H, et al. GO term predictions. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/KNMWA .
Kirilenko BM, Munegowda C, Osipova E, et al. TOGA integrates gene annotation with orthology inference at scale. bioRxiv. 2022. https://doi.org/10.1101/2022.09.08.507143 .
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC, et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 2021;49:D1138–43.
pubmed: 33068428 doi: 10.1093/nar/gkaa891
Thorn CF, Klein TE, Altman RB. PharmGKB: the Pharmacogenomics Knowledge Base. Methods Mol Biol. 2013;1015:311–20.
pubmed: 23824865 pmcid: 4084821 doi: 10.1007/978-1-62703-435-7_20
Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–12.
pubmed: 30445434 doi: 10.1093/nar/gky1120
Kuusisto F, Ng D, Steill J, Ross I, Livny M, Thomson J, et al. KinderMiner Web: a simple web tool for ranking pairwise associations in biomedical applications. F1000Res. 2020;9:832.
pubmed: 35083039 doi: 10.12688/f1000research.25523.1
Raja K, Steill J, Ross I, Tsoi LC, Kuusisto F, Ni Z, et al. SKiM - a generalized literature-based discovery system for uncovering novel biomedical knowledge from PubMed. bioRxiv. 2020. https://doi.org/10.1101/2020.10.16.343012 .
AGP Specification v2.1. https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/ . Accessed 21 Nov 2021.
Bailey JA, Church DM, Ventura M, Rocchi M, Eichler EE. Analysis of segmental duplications and genome assembly in the mouse. Genome Res. 2004;14:789–801.
pubmed: 15123579 pmcid: 479105 doi: 10.1101/gr.2238404
Dharia AP, Obla A, Gajdosik MD, Simon A, Nelson CE. Tempo and mode of gene duplication in mammalian ribosomal protein evolution. PLoS One. 2014;9:e111721.
pubmed: 25369106 pmcid: 4219774 doi: 10.1371/journal.pone.0111721
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944.
pubmed: 29373581 pmcid: 5802927 doi: 10.1371/journal.pcbi.1005944
Pautsch A, Stadler N, Löhle A, et al. Crystal structure of glucokinase regulatory protein. Biochemistry. 2013;52:3523–31.
pubmed: 23621087 doi: 10.1021/bi4000782
Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One. 2017;12:e0183070.
pubmed: 28813483 pmcid: 5559066 doi: 10.1371/journal.pone.0183070
Wei Q, Khan IK, Ding Z, Yerneni S, Kihara D. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinformatics. 2017;18:177.
pubmed: 28320317 pmcid: 5359872 doi: 10.1186/s12859-017-1600-5
McElhinny TL, Smale L, Holekamp KE. Patterns of body temperature, activity, and reproductive behavior in a tropical murid rodent, Arvicanthis niloticus. Physiol Behav. 1997;62:91–6.
pubmed: 9226347 doi: 10.1016/S0031-9384(97)00146-7
Cao H, Wu H, Luo R, et al. De novo assembly of a haplotype-resolved human genome. Nat Biotechnol. 2015;33:617–22.
pubmed: 26006006 doi: 10.1038/nbt.3200
Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat Genet. 2002;31:74–8.
pubmed: 11941369 doi: 10.1038/ng867
Flanagan SE, Patch A-M, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomarkers. 2010;14:533–7.
pubmed: 20642364 doi: 10.1089/gtmb.2010.0036
Labay V, Raz T, Baron D, et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet. 1999;22:300–4.
pubmed: 10391221 doi: 10.1038/10372
Gordon D, Huddleston J, Chaisson MJP, et al. Long-read sequence assembly of the gorilla genome. Science. 2016;352:aae0344.
pubmed: 27034376 pmcid: 4920363 doi: 10.1126/science.aae0344
Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet. 2006;7:552–64.
pubmed: 16770338 doi: 10.1038/nrg1895
Numanagic I, Gökkaya AS, Zhang L, Berger B, Alkan C, Hach F. Fast characterization of segmental duplications in genome assemblies. Bioinformatics. 2018;34:i706–14.
pubmed: 30423092 pmcid: 6129265 doi: 10.1093/bioinformatics/bty586
Sarsani VK, Raghupathy N, Fiddes IT, et al. The Genome of C57BL/6J “Eve”, the Mother of the Laboratory Mouse Genome Reference Strain. G3 Genes Genomes Genetics. 2019;9:1795–805.
pubmed: 30996023 pmcid: 6553538
Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Corbett-Detig R, et al. The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. Sci Adv. 2019;5:eaaw6441.
pubmed: 31355335 pmcid: 6656541 doi: 10.1126/sciadv.aaw6441
Cheung J, Wilson MD, Zhang J, Khaja R, MacDonald JR, Heng HHQ, et al. Recent segmental and gene duplications in the mouse genome. Genome Biol. 2003;4:R47.
pubmed: 12914656 pmcid: 193640 doi: 10.1186/gb-2003-4-8-r47
GRCm38.p6 - Genome - Assembly - NCBI. https://identifiers.org/insdc.gca:GCA_000001635.8 . Accessed 26 Sep 2022.
ASM377452v2 - genome - assembly - NCBI. https://identifiers.org/insdc.gca:GCA_003774525.2 . Accessed 26 Sep 2022.
mRatBN7.2 - Genome - Assembly - NCBI. https://identifiers.org/insdc.gca:GCA_015227675.2 . Accessed 26 Sep 2022.
UCI_PerLeu_2.1 - genome - assembly - NCBI. https://identifiers.org/insdc.gca:GCA_004664715.2 . Accessed 26 Sep 2022.
Chaisson M, Toh H, Yang C, et al. Segmental duplications. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/4GA9C .
Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, et al. Long-read sequence and assembly of segmental duplications. Nat Methods. 2019;16:88–94.
pubmed: 30559433 doi: 10.1038/s41592-018-0236-3
Sullivan SL, Adamson MC, Ressler KJ, Kozak CA, Buck LB. The chromosomal distribution of mouse odorant receptor genes. Proc Natl Acad Sci U S A. 1996;93:884–8.
pubmed: 8570653 pmcid: 40152 doi: 10.1073/pnas.93.2.884
Parsons JD. Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci. 1995;11:615–9.
pubmed: 8808577
Kirilenko BM, Hagey LR, Barnes S, Falany CN, Hiller M. Evolutionary analysis of bile acid-conjugating enzymes reveals a complex duplication and reciprocal loss history. Genome Biol Evol. 2019;11:3256–68.
pubmed: 31670760 pmcid: 6934887 doi: 10.1093/gbe/evz238
Hunt MC, Alexson SEH. Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism. Prog Lipid Res. 2008;47:405–21.
pubmed: 18538142 doi: 10.1016/j.plipres.2008.05.001
Hernández-Saavedra D, Stanford KI. The regulation of lipokines by environmental factors. Nutrients. 2019. https://doi.org/10.3390/nu11102422 .
Shimoyama M, De Pons J, Hayman GT, et al. The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43:D743–50.
pubmed: 25355511 doi: 10.1093/nar/gku1026
Malik VS, Popkin BM, Bray GA, Després J-P, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121:1356–64.
pubmed: 20308626 pmcid: 2862465 doi: 10.1161/CIRCULATIONAHA.109.876185
Falchi M, El-Sayed Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014;46:492–7.
pubmed: 24686848 pmcid: 6485469 doi: 10.1038/ng.2939
Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39:1256–60.
pubmed: 17828263 pmcid: 2377015 doi: 10.1038/ng2123
Pajic P, Pavlidis P, Dean K, Neznanova L, Romano R-A, Garneau D, et al. Independent amylase gene copy number bursts correlate with dietary preferences in mammals. Elife. 2019. https://doi.org/10.7554/eLife.44628 .
Senzota RBM. The habitat and food habits of the grass rats (Arvicanthis niloticus) in the Serengeti National Park, Tanzania. Afr J Ecol. 1982;20:241–52.
doi: 10.1111/j.1365-2028.1982.tb00300.x
Cooke A, Schwarzl T, Huppertz I, Kramer G, Mantas P, Alleaume A-M, et al. The RNA-binding protein YBX3 controls amino acid levels by regulating SLC mRNA abundance. Cell Rep. 2019;27:3097–3106.e5.
pubmed: 31189097 doi: 10.1016/j.celrep.2019.05.039
White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261.
pubmed: 34044180 pmcid: 8513145 doi: 10.1016/j.molmet.2021.101261
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol. 2015;26:88–95.
pubmed: 25692341 pmcid: 4422901 doi: 10.1097/MOL.0000000000000155
Sanghera DK, Hopkins R, Malone-Perez MW, et al. Targeted sequencing of candidate genes of dyslipidemia in Punjabi Sikhs: population-specific rare variants in GCKR promote ectopic fat deposition. PLoS One. 2019;14:e0211661.
pubmed: 31369557 pmcid: 6675050 doi: 10.1371/journal.pone.0211661
Vaxillaire M, Cavalcanti-Proença C, Dechaume A, Tichet J, Marre M, Balkau B, et al. The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes. 2008;57:2253–7.
pubmed: 18556336 pmcid: 2494697 doi: 10.2337/db07-1807
Sparsø T, Andersen G, Nielsen T, et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia. 2008;51:70–5.
pubmed: 18008060 doi: 10.1007/s00125-007-0865-z
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.
doi: 10.1126/science.1142358
Zahedi AS, Akbarzadeh M, Sedaghati-Khayat B, Seyedhamzehzadeh A, Daneshpour MS. GCKR common functional polymorphisms are associated with metabolic syndrome and its components: a 10-year retrospective cohort study in Iranian adults. Diabetol Metab Syndr. 2021;13:20.
pubmed: 33602293 pmcid: 7890822 doi: 10.1186/s13098-021-00637-4
Chen J, Spracklen CN, Marenne G, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53:840–60.
pubmed: 34059833 pmcid: 7610958 doi: 10.1038/s41588-021-00852-9
Lee W, Yun S, Choi GH, Jung TW. Fibronectin Type III Domain Containing 4 attenuates hyperlipidemia-induced insulin resistance via suppression of inflammation and ER stress through HO-1 expression in adipocytes. Biochem Biophys Res Commun. 2018;502:129–36.
pubmed: 29787756 doi: 10.1016/j.bbrc.2018.05.133
Bukhman YV, Kirilenko B, Munegowda C, et al. Comparison of house mouse gene complement to Nile rat using TOGA: mouse_genes_missing_from_Nile_rat.txt. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/FH62M .
Tsuboi A, Minato S, Yano M, Takeuchi M, Kitaoka K, Kurata M, et al. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women. BMJ Open Diabetes Res Care. 2018;6:e000508.
pubmed: 29732164 pmcid: 5931285 doi: 10.1136/bmjdrc-2018-000508
Bukhman YV, Kirilenko B, Munegowda C, et al. Comparison of house mouse gene complement to Nile rat using TOGA: Nile_rat_specific_genes.txt. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/FH62M .
Bukhman YV, Kirilenko B, Munegowda C, et al. Gene lists: homozygous_missing.csv. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/589XG .
Bukhman YV, Raja K, Kirilenko B, et al. Gene lists: homozygous_missing_diabetes_genes.csv. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/589XG .
Foti D, Chiefari E, Fedele M, et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med. 2005;11:765–73.
pubmed: 15924147 doi: 10.1038/nm1254
Heymann AD, Cohen Y, Chodick G. Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes. Diabetes Care. 2012;35:e58.
pubmed: 22826451 pmcid: 3402279 doi: 10.2337/dc11-2527
Bukhman YV, Raja K, Toh H, et al. Gene lists: t2d_genes_found_in_Nile_rat_but_not_mouse.csv. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/589XG .
Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun. 2002;294:630–4.
pubmed: 12056815 doi: 10.1016/S0006-291X(02)00536-3
Gotfryd K, Mósca AF, Missel JW, et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018;9:4749.
pubmed: 30420639 pmcid: 6232157 doi: 10.1038/s41467-018-07176-z
Yang C, Zhang G, Toh H, et al. Gene lists: all.pass.gene.annot. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/589XG
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
pubmed: 15713233 pmcid: 553969 doi: 10.1186/1471-2105-6-31
Gudmundsson S, Karczewski KJ, Francioli LC, et al. Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021;597:E3–4.
pubmed: 34373650 pmcid: 8410591 doi: 10.1038/s41586-021-03758-y
Plesner A, Liston P, Tan R, Korneluk RG, Verchere CB. The X-linked inhibitor of apoptosis protein enhances survival of murine islet allografts. Diabetes. 2005;54:2533–40.
pubmed: 16123340 doi: 10.2337/diabetes.54.9.2533
Pedersen HK, Gudmundsdottir V, Brunak S. Pancreatic islet protein complexes and their dysregulation in type 2 diabetes. Front Genet. 2017;8:43.
pubmed: 28473845 pmcid: 5397424 doi: 10.3389/fgene.2017.00043
Toh H, Yang C, Formenti G, et al. Interesting genes: Ppp2r5e_mammals_COBALT_alignment.pdf. Nile rat genome paper supplementary materials on OSF. 2021. https://doi.org/10.17605/OSF.IO/EMF23 .
Bergeron LA, Besenbacher S, Turner T, et al. The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. Elife. 2022. https://doi.org/10.7554/eLife.73577 .
doi: 10.7554/eLife.73577 pubmed: 35018888 pmcid: 8830884
Frühbeck G, Fernández-Quintana B, Paniagua M, et al. FNDC4, a novel adipokine that reduces lipogenesis and promotes fat browning in human visceral adipocytes. Metabolism. 2020;108:154261.
pubmed: 32407726 doi: 10.1016/j.metabol.2020.154261
Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. Elife. 2016. https://doi.org/10.7554/eLife.11994 .
Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–8.
pubmed: 31971576 pmcid: 7203741 doi: 10.1093/bioinformatics/btaa025
Formenti G, Rhie A, Balacco J, et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 2021;22:120.
pubmed: 33910595 pmcid: 8082918 doi: 10.1186/s13059-021-02336-9
O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
pubmed: 26553804 doi: 10.1093/nar/gkv1189
Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016. https://doi.org/10.1038/ncomms11708 .
Bukhman YV, Toh H, Yang C, et al. Assembly quality: Rodent_assembly_stats.R. Nile rat genome paper supplementary materials. 2021. https://doi.org/10.17605/OSF.IO/K9CEG .
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:245.
pubmed: 32928274 pmcid: 7488777 doi: 10.1186/s13059-020-02134-9
Toh H, Yang C, Formenti G, et al. GenomeArk Amazon S3 bucket, Arvicanthis niloticus. 2022. https://genomeark.s3.amazonaws.com/index.html?prefix=species/Arvicanthis_niloticus/ . Accessed 26 Sep 2022.
Chaisson MJP SegDupAnnotation. In: GitHub. https://github.com/ChaissonLab/SegDupAnnotation . Accessed 9 Mar 2022.
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474.
pubmed: 17064419 pmcid: 1634758 doi: 10.1186/1471-2105-7-474
Yang C Nile_rat: scripts for nile rat genome study. https://github.com/comery/Nile_rat . Accessed 9 Mar 2022.
Nattestad M, Schatz MC. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics. 2016;32:3021–3.
pubmed: 27318204 pmcid: 6191160 doi: 10.1093/bioinformatics/btw369
Goel M, Sun H, Jiao W-B, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277.
pubmed: 31842948 pmcid: 6913012 doi: 10.1186/s13059-019-1911-0
Pyysalo S, Baker S, Ali I, et al. LION LBD: a literature-based discovery system for cancer biology. Bioinformatics. 2019;35:1553–61.
pubmed: 30304355 doi: 10.1093/bioinformatics/bty845
Hristovski D, Friedman C, Rindflesch TC, Peterlin B. Exploiting semantic relations for literature-based discovery. AMIA Annu Symp Proc. 2006;2006:349–53.
pubmed: 17238361 pmcid: 1839258

Auteurs

Huishi Toh (H)

Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93117, USA.

Chentao Yang (C)

BGI-Shenzhen, Shenzhen, 518083, China.

Giulio Formenti (G)

Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY, USA.

Kalpana Raja (K)

Bioinformatics and Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
Current address: Sema4, Stamford, CT, USA.

Lily Yan (L)

Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA.

Alan Tracey (A)

Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.

William Chow (W)

Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.

Kerstin Howe (K)

Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.

Lucie A Bergeron (LA)

Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.

Guojie Zhang (G)

BGI-Shenzhen, Shenzhen, 518083, China.
Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.

Bettina Haase (B)

Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.

Jacquelyn Mountcastle (J)

Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.

Olivier Fedrigo (O)

Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.

John Fogg (J)

Department of Statistics, University of Wisconsin - Madison, Madison, WI, USA.

Bogdan Kirilenko (B)

LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany.
Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany.
Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.

Chetan Munegowda (C)

LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany.
Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany.
Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.

Michael Hiller (M)

LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany.
Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany.
Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.

Aashish Jain (A)

Department of Computer Science, Purdue University, West Lafayette, IN, USA.

Daisuke Kihara (D)

Department of Computer Science, Purdue University, West Lafayette, IN, USA.
Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.

Arang Rhie (A)

Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA.

Adam M Phillippy (AM)

Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD, USA.

Scott A Swanson (SA)

Bioinformatics and Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.

Peng Jiang (P)

Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA.
Department of Biological, Geological and Environmental Sciences (BGES), Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA.
Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.

Dennis O Clegg (DO)

Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Mail Code 5060, University of California, Santa Barbara, CA, 93016, USA.

Erich D Jarvis (ED)

The Rockefeller University, Box 54, 1230 York Avenue, New York, NY, 10065, USA.

James A Thomson (JA)

Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. jthomson@morgridge.org.
Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA. jthomson@morgridge.org.
Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI, 53715, USA. jthomson@morgridge.org.

Ron Stewart (R)

Bioinformatics and Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA. rstewart@morgridge.org.

Mark J P Chaisson (MJP)

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. mchaisso@usc.edu.

Yury V Bukhman (YV)

Bioinformatics and Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA. ybukhman@morgridge.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH