Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries.
Journal
Blood transfusion = Trasfusione del sangue
ISSN: 2385-2070
Titre abrégé: Blood Transfus
Pays: Italy
ID NLM: 101237479
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
20
07
2022
accepted:
09
09
2022
pubmed:
9
11
2022
medline:
15
2
2023
entrez:
8
11
2022
Statut:
ppublish
Résumé
The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3- Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.
Sections du résumé
BACKGROUND
The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice.
MATERIALS AND METHODS
RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-
RESULTS
Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and
DISCUSSION
This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.
Identifiants
pubmed: 36346885
pii: 2022.0172-22
doi: 10.2450/2022.0172-22
pmc: PMC9918384
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
50-61Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL146442
Pays : United States
Organisme : NIGMS NIH HHS
ID : RM1 GM131968
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL161004
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL148151
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150032
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
J Cell Mol Med. 2007 Jan-Feb;11(1):148-55
pubmed: 17367509
Shock. 2020 Mar;53(3):352-362
pubmed: 31478989
Front Med (Lausanne). 2017 Oct 17;4:175
pubmed: 29090212
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18515-20
pubmed: 19846781
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396
pubmed: 34019663
J Blood Transfus. 2013;2013:896537
pubmed: 24066261
Haematologica. 2021 May 01;106(5):1290-1302
pubmed: 32241843
J Lipid Res. 2018 Jul;59(7):1132-1147
pubmed: 29716959
Transfusion. 2018 Dec;58(12):2978-2991
pubmed: 30312994
Blood Transfus. 2010 Oct;8(4):220-36
pubmed: 20967163
Curr Opin Hematol. 2020 May;27(3):155-162
pubmed: 32141895
Blood Transfus. 2022 Jan;20(1):27-39
pubmed: 33263521
Transfusion. 2008 Jun;48(6):1053-60
pubmed: 18298603
Haematologica. 2018 Feb;103(2):361-372
pubmed: 29079593
Transfusion. 2011 Jul;51(7):1450-9
pubmed: 21251007
Transfusion. 2019 Jan;59(1):89-100
pubmed: 30353560
Haematologica. 2012 Jan;97(1):107-15
pubmed: 21993682
Transfusion. 2021 Jun;61(6):1867-1883
pubmed: 33904180
Free Radic Biol Med. 2016 Jul;96:152-65
pubmed: 27094493
Blood Adv. 2017 Jun 27;1(15):1132-1141
pubmed: 29034365
Haematologica. 2021 Nov 01;106(11):2971-2985
pubmed: 33979990
Transfusion. 2016 Feb;56(2):392-403
pubmed: 26477888
Blood Transfus. 2019 Jan;17(1):27-52
pubmed: 30653459
Transfusion. 2015 Jan;55(1):205-19
pubmed: 25130459
Transfusion. 2019 Jul;59(7):2264-2275
pubmed: 31002399
Curr Protoc Bioinformatics. 2012 Mar;Chapter 14:Unit14.11
pubmed: 22389014
Transfusion. 2014 Jan;54(1):137-48
pubmed: 23721209
Transfusion. 2017 Feb;57(2):325-336
pubmed: 27813142
Blood. 2016 Sep 22;128(12):e32-42
pubmed: 27405778
Transfusion. 2016 Apr;56(4):980-93
pubmed: 26662506
Front Physiol. 2022 Mar 14;13:833242
pubmed: 35360223
JCI Insight. 2021 Feb 8;6(3):
pubmed: 33351786
Transfusion. 2021 Oct;61(10):3017-3025
pubmed: 34480352
Transfusion. 2021 May;61(5):1586-1599
pubmed: 33830505
Rapid Commun Mass Spectrom. 2017 Apr 30;31(8):663-673
pubmed: 28195377
Nat Commun. 2016 Jul 15;7:12086
pubmed: 27417539
Circulation. 2016 Aug 2;134(5):405-21
pubmed: 27482003
Vox Sang. 2007 Jan;92(1):22-31
pubmed: 17181587
Cell Metab. 2022 Feb 1;34(2):299-316.e6
pubmed: 35108516
Haematologica. 2021 Oct 01;106(10):2726-2739
pubmed: 33054131
Transfusion. 2020 Jun;60(6):1197-1211
pubmed: 32394461
Blood Adv. 2019 Aug 13;3(15):2272-2285
pubmed: 31350307
JCI Insight. 2022 Jan 11;7(1):
pubmed: 34793330
Biochemistry. 1996 May 21;35(20):6393-8
pubmed: 8639585
J Proteome Res. 2016 Oct 7;15(10):3883-3895
pubmed: 27646145
FEBS J. 2010 Jan;277(2):343-56
pubmed: 19968714
Front Physiol. 2022 Apr 26;13:868578
pubmed: 35557972
Transfusion. 2021 Feb;61(2):435-448
pubmed: 33146433
Methods Mol Biol. 2019;1978:121-135
pubmed: 31119660
Front Mol Biosci. 2016 Apr 21;3:13
pubmed: 27148539
Methods Mol Biol. 2019;1978:13-26
pubmed: 31119654
Transfusion. 2007 Jul;47(7):1212-20
pubmed: 17581156
Transfusion. 2020 Jun;60(6):1160-1174
pubmed: 32385854
Transfusion. 2020 Apr;60(4):786-798
pubmed: 32104927
Transfusion. 2020 Jun;60(6):1183-1196
pubmed: 32385922
Blood Transfus. 2012 May;10 Suppl 2:s55-62
pubmed: 22890269