Clonal hematopoiesis and cardiovascular disease: deciphering interconnections.
Atherosclerosis
CHIP
Clonal hematopoiesis
Clonal hematopoiesis of indeterminate potential
DNMT3A
Heart failure
JAK2
TET2
Journal
Basic research in cardiology
ISSN: 1435-1803
Titre abrégé: Basic Res Cardiol
Pays: Germany
ID NLM: 0360342
Informations de publication
Date de publication:
10 11 2022
10 11 2022
Historique:
received:
13
08
2022
accepted:
04
11
2022
revised:
03
11
2022
entrez:
10
11
2022
pubmed:
11
11
2022
medline:
15
11
2022
Statut:
epublish
Résumé
Cardiovascular and oncological diseases represent the global major causes of death. For both, a novel and far-reaching risk factor has been identified: clonal hematopoiesis (CH). CH is defined as clonal expansion of peripheral blood cells on the basis of somatic mutations, without overt hematological malignancy. The most commonly affected genes are TET2, DNMT3A, ASXL1 and JAK2. By the age of 70, at least 20-50% of all individuals carry a CH clone, conveying a striking clinical impact by increasing all-cause mortality by 40%. This is due predominantly to a nearly two-fold increase of cardiovascular risk, but also to an elevated risk of malignant transformation. Individuals with CH show not only increased risk for, but also worse outcomes after arteriosclerotic events, such as stroke or myocardial infarction, decompensated heart failure and cardiogenic shock. Elevated cytokine levels, dysfunctional macrophage activity and activation of the inflammasome suggest that a vicious cycle of chronic inflammation and clonal expansion represents the major functional link. Despite the apparently high impact of this entity, awareness, functional understanding and especially clinical implications still require further research. This review provides an overview of the current knowledge of CH and its relation to cardiovascular and hematological diseases. It focuses on the basic functional mechanisms in the interplay between atherosclerosis, inflammation and CH, identifies issues for further research and considers potential clinical implications.
Identifiants
pubmed: 36355225
doi: 10.1007/s00395-022-00969-w
pii: 10.1007/s00395-022-00969-w
pmc: PMC9649510
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
55Informations de copyright
© 2022. The Author(s).
Références
Abegunde SO, Buckstein R, Wells RA et al (2018) An inflammatory environment containing TNFα favors Tet2 -mutant clonal hematopoiesis. Exp Hematol 59:60–65. https://doi.org/10.1016/j.exphem.2017.11.002
doi: 10.1016/j.exphem.2017.11.002
Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559:400–404. https://doi.org/10.1038/s41586-018-0317-6
doi: 10.1038/s41586-018-0317-6
Abplanalp WT, Cremer S, John D et al (2021) Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ Res 128:216–228. https://doi.org/10.1161/CIRCRESAHA.120.317104
doi: 10.1161/CIRCRESAHA.120.317104
Abplanalp WT, Mas-Peiro S, Cremer S et al (2020) Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol 5:1170–1175. https://doi.org/10.1001/jamacardio.2020.2468
doi: 10.1001/jamacardio.2020.2468
Acuna-Hidalgo R, Sengul H, Steehouwer M et al (2017) Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet 101:50–64. https://doi.org/10.1016/j.ajhg.2017.05.013
doi: 10.1016/j.ajhg.2017.05.013
Agha G, Mendelson MM, Ward-Caviness CK et al (2019) Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 140:645–657. https://doi.org/10.1161/circulationaha.118.039357
doi: 10.1161/circulationaha.118.039357
Arends CM, Weiss M, Christen F et al (2019) Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 105:e264–e267. https://doi.org/10.3324/haematol.2019.223305
doi: 10.3324/haematol.2019.223305
Asada S, Kitamura T (2021) Clonal hematopoiesis and associated diseases: a review of recent findings. Cancer Sci 112:3962–3971. https://doi.org/10.1111/cas.15094
doi: 10.1111/cas.15094
Assmus B, Cremer S, Kirschbaum K et al (2021) Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur Heart J 42:257–265. https://doi.org/10.1093/eurheartj/ehaa845
doi: 10.1093/eurheartj/ehaa845
Bhattacharya R (2020) Improved diet quality is associated with lower prevalence of clonal hematopoiesis of indeterminate potential. Circulation 142:A16686
doi: 10.1161/circ.142.suppl_3.16686
Bhattacharya R, Zekavat SM, Haessler J et al (2022) Clonal hematopoiesis is associated with higher risk of stroke. Stroke 53:788–797. https://doi.org/10.1161/STROKEAHA.121.037388
doi: 10.1161/STROKEAHA.121.037388
Bhattacharya R, Bick AG (2021) Clonal hematopoiesis of indeterminate potential: an expanding genetic cause of cardiovascular disease. Curr Atheroscler Rep 23:66. https://doi.org/10.1007/s11883-021-00966-9
doi: 10.1007/s11883-021-00966-9
Bick AG, Pirruccello JP, Griffin GK et al (2020) Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141:124–131. https://doi.org/10.1161/CIRCULATIONAHA.119.044362
doi: 10.1161/CIRCULATIONAHA.119.044362
Bick AG, Weinstock JS, Nandakumar SK et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768. https://doi.org/10.1038/s41586-020-2819-2
doi: 10.1038/s41586-020-2819-2
Böhme M, Desch S, Rosolowski M et al (2022) Impact of clonal hematopoiesis in patients with cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 80:1545–1556
doi: 10.1016/j.jacc.2022.08.740
Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226. https://doi.org/10.1038/s41588-020-00710-0
doi: 10.1038/s41588-020-00710-0
Bolton KL, Gillis NK, Coombs CC et al (2019) Managing clonal hematopoiesis in patients with solid tumors. J Clin Oncol 37:7–11. https://doi.org/10.1200/JCO.18.00331
doi: 10.1200/JCO.18.00331
Bonnefond A, Skrobek B, Lobbens S et al (2013) Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet 45:1040–1043. https://doi.org/10.1038/ng.2700
doi: 10.1038/ng.2700
Brunner AM, Blonquist TM, Hobbs GS et al (2017) Risk and timing of cardiovascular death among patients with myelodysplastic syndromes. Blood Adv 1:2032–2040. https://doi.org/10.1182/bloodadvances.2017010165
doi: 10.1182/bloodadvances.2017010165
Buscarlet M, Provost S, Zada YF et al (2017) DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130:753–762. https://doi.org/10.1182/blood-2017-04-777029
doi: 10.1182/blood-2017-04-777029
Busque L, Sun M, Buscarlet M et al (2020) High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv 4:2430–2438. https://doi.org/10.1182/bloodadvances.2019000770
doi: 10.1182/bloodadvances.2019000770
Busque L, Buscarlet M, Mollica L et al (2018) Concise review: age-related clonal hematopoiesis: stem cells tempting the devil. Stem Cells 36:1287–1294. https://doi.org/10.1002/stem.2845
doi: 10.1002/stem.2845
Busque L, Patel JP, Figueroa ME et al (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44:1179–1181. https://doi.org/10.1038/ng.2413
doi: 10.1038/ng.2413
Challen G, Goodell MA (2020) Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood. https://doi.org/10.1182/blood.2020006510
doi: 10.1182/blood.2020006510
Christen F, Hablesreiter R, Hoyer K et al (2021) Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia. https://doi.org/10.1038/s41375-021-01469-x
doi: 10.1038/s41375-021-01469-x
Cimmino L, Dolgalev I, Wang Y et al (2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170:1079-1095.e20. https://doi.org/10.1016/j.cell.2017.07.032
doi: 10.1016/j.cell.2017.07.032
Cobo I, Tanaka T, Glass CK et al (2021) Clonal hematopoiesis driven by DNMT3A and TET2 mutations: role in monocyte and macrophage biology and atherosclerotic cardiovascular disease. Curr Opin Hematol 29:1–7. https://doi.org/10.1097/MOH.0000000000000688
doi: 10.1097/MOH.0000000000000688
Cook EK, Izukawa T, Young S et al (2019) Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv 3:2482–2486. https://doi.org/10.1182/bloodadvances.2018024729
doi: 10.1182/bloodadvances.2018024729
Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:374-382.e4. https://doi.org/10.1016/j.stem.2017.07.010
doi: 10.1016/j.stem.2017.07.010
Cremer S, Kirschbaum K, Berkowitsch A et al (2020) Multiple somatic mutations for clonal hematopoiesis are associated with increased mortality in patients with chronic heart failure. Circ Genom Precis Med 13:e003003. https://doi.org/10.1161/circgen.120.003003
doi: 10.1161/circgen.120.003003
Dawoud AAZ, Tapper WJ, Cross NCP (2020) Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34:2660–2672. https://doi.org/10.1038/s41375-020-0896-8
doi: 10.1038/s41375-020-0896-8
Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023. https://doi.org/10.1038/s41591-018-0081-z
doi: 10.1038/s41591-018-0081-z
Dharan NJ, Yeh P, Bloch M et al (2021) HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat Med 27:1006–1011. https://doi.org/10.1038/s41591-021-01357-y
doi: 10.1038/s41591-021-01357-y
Di Wu, Di Hu, Chen H et al (2018) Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559:637–641. https://doi.org/10.1038/s41586-018-0350-5
doi: 10.1038/s41586-018-0350-5
Dorsheimer L, Assmus B, Rasper T et al (2019) Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4:25–33. https://doi.org/10.1001/jamacardio.2018.3965
doi: 10.1001/jamacardio.2018.3965
Dotan I, Yang J, Ikeda J et al (2022) Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Commun Biol 5:132. https://doi.org/10.1038/s42003-022-03078-5
doi: 10.1038/s42003-022-03078-5
Fabre MA, McKerrell T, Zwiebel M et al (2020) Concordance for clonal hematopoiesis is limited in elderly twins. Blood 135:269–273. https://doi.org/10.1182/blood.2019001807
doi: 10.1182/blood.2019001807
Fey MF, Liechti-Gallati S, von Rohr A et al (1994) Clonality and X-inactivation patterns in hematopoietic cell populations detected by the highly informative M27 beta DNA probe. Blood 83:931–938. https://doi.org/10.1182/blood.V83.4.931.931 (see comments)
doi: 10.1182/blood.V83.4.931.931
Fidler TP, Xue C, Yalcinkaya M et al (2021) The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592:296–301. https://doi.org/10.1038/s41586-021-03341-5
doi: 10.1038/s41586-021-03341-5
Fujino T, Goyama S, Sugiura Y et al (2021) Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun. https://doi.org/10.1038/s41467-021-22053-y
doi: 10.1038/s41467-021-22053-y
Fuster JJ, Zuriaga MA, Zorita V et al (2020) TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 33:108326. https://doi.org/10.1016/j.celrep.2020.108326
doi: 10.1016/j.celrep.2020.108326
Fuster JJ, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381
doi: 10.1126/science.aag1381
Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. NEJM 371:2477–2487. https://doi.org/10.1056/NEJMoa1409405
doi: 10.1056/NEJMoa1409405
Hansen JW, Pedersen DA, Larsen LA et al (2020) Clonal hematopoiesis in elderly twins: concordance, discordance, and mortality. Blood 135:261–268. https://doi.org/10.1182/blood.2019001793
doi: 10.1182/blood.2019001793
Haring B, Reiner AP, Liu J et al (2021) Healthy lifestyle and clonal hematopoiesis of indeterminate potential: results from the women’s health initiative. J Am Heart Assoc 10:e018789. https://doi.org/10.1161/JAHA.120.018789
doi: 10.1161/JAHA.120.018789
Hecker JS, Hartmann L, Rivière J et al (2021) CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 138:1727–1732. https://doi.org/10.1182/blood.2020010163
doi: 10.1182/blood.2020010163
Heyde A, Rohde D, McAlpine CS et al (2021) Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184:1348-1361.e22. https://doi.org/10.1016/j.cell.2021.01.049
doi: 10.1016/j.cell.2021.01.049
Hinds DA, Barnholt KE, Mesa RA et al (2016) Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128:1121–1128. https://doi.org/10.1182/blood-2015-06-652941
doi: 10.1182/blood-2015-06-652941
Honigberg MC, Zekavat SM, Niroula A et al (2021) Premature menopause, clonal hematopoiesis, and coronary artery disease in postmenopausal women. Circulation 143:410–423. https://doi.org/10.1161/CIRCULATIONAHA.120.051775
doi: 10.1161/CIRCULATIONAHA.120.051775
Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700-713.e6. https://doi.org/10.1016/j.stem.2018.10.004
doi: 10.1016/j.stem.2018.10.004
Ichiyama K, Chen T, Wang X et al (2015) The methylcytosine dioxygenase Tet2 Promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42:613–626. https://doi.org/10.1016/j.immuni.2015.03.005
doi: 10.1016/j.immuni.2015.03.005
Jaiswal S, Libby P (2020) Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol 17:137–144. https://doi.org/10.1038/s41569-019-0247-5
doi: 10.1038/s41569-019-0247-5
Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science. https://doi.org/10.1126/science.aan4673
doi: 10.1126/science.aan4673
Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. NEJM 377:111–121. https://doi.org/10.1056/NEJMoa1701719
doi: 10.1056/NEJMoa1701719
Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. NEJM 371:2488–2498. https://doi.org/10.1056/NEJMoa1408617
doi: 10.1056/NEJMoa1408617
Kiefer KC, Cremer S, Pardali E et al (2021) Full spectrum of clonal haematopoiesis-driver mutations in chronic heart failure and their associations with mortality. ESC Heart Fail 8:1873–1884. https://doi.org/10.1002/ehf2.13297
doi: 10.1002/ehf2.13297
Kunimoto H, Nakajima H (2021) TET2: a cornerstone in normal and malignant hematopoiesis. Cancer Sci 112:31–40. https://doi.org/10.1111/cas.14688
doi: 10.1111/cas.14688
Levin MG, Nakao T, Zekavat SM et al (2022) Genetics of smoking and risk of clonal hematopoiesis. Sci Rep 12:7248. https://doi.org/10.1038/s41598-022-09604-z
doi: 10.1038/s41598-022-09604-z
Libby P (2021) The changing landscape of atherosclerosis. Nature 592:524–533. https://doi.org/10.1038/s41586-021-03392-8
doi: 10.1038/s41586-021-03392-8
Li G, Peng J, Liu Y et al (2015) Oxidized low-density lipoprotein inhibits THP-1-derived macrophage autophagy via TET2 down-regulation. Lipids 50:177–183. https://doi.org/10.1007/s11745-014-3977-5
doi: 10.1007/s11745-014-3977-5
Lim GB (2020) Clonal haematopoiesis induces a pro-inflammatory monocyte phenotype in HF. Nat Rev Cardiol 18:74. https://doi.org/10.1038/s41569-020-00481-5
doi: 10.1038/s41569-020-00481-5
Lin L, Zhang M-X, Zhang L et al (2021) Autophagy, pyroptosis, and ferroptosis: new regulatory mechanisms for atherosclerosis. Front Cell Dev Biol 9:809955. https://doi.org/10.3389/fcell.2021.809955
doi: 10.3389/fcell.2021.809955
Lin Z, Ding Q, Li X et al (2021) Targeting epigenetic mechanisms in vascular aging. Front Cardiovasc Med 8:806988. https://doi.org/10.3389/fcvm.2021.806988
doi: 10.3389/fcvm.2021.806988
Li X, Zhang Q, Ding Y et al (2016) Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol 17:806–815. https://doi.org/10.1038/ni.3464
doi: 10.1038/ni.3464
Loh P-R, Genovese G, Handsaker RE et al (2018) Insights into clonal haematopoiesis from 8342 mosaic chromosomal alterations. Nature 559:350–355. https://doi.org/10.1038/s41586-018-0321-x
doi: 10.1038/s41586-018-0321-x
Mas-Peiro S, Hoffmann J, Fichtlscherer S et al (2020) Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J 41:933–939. https://doi.org/10.1093/eurheartj/ehz591
doi: 10.1093/eurheartj/ehz591
Mba Medie F, Sharma-Kuinkel BK, Ruffin F et al (2019) Genetic variation of DNA methyltransferase-3A contributes to protection against persistent MRSA bacteremia in patients. Proc Natl Acad Sci U S A 116:20087–20096. https://doi.org/10.1073/pnas.1909849116
doi: 10.1073/pnas.1909849116
Meisel M, Hinterleitner R, Pacis A et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584. https://doi.org/10.1038/s41586-018-0125-z
doi: 10.1038/s41586-018-0125-z
Mitchell E, Spencer Chapman M, Williams N et al (2022) Clonal dynamics of haematopoiesis across the human lifespan. Nature 606:343–350. https://doi.org/10.1038/s41586-022-04786-y
doi: 10.1038/s41586-022-04786-y
Palomo L, Santiago-Vacas E, Pascual-Figal D et al (2021) Prevalence and characteristics of clonal hematopoiesis in heart failure. Rev Esp Cardiol (Engl Ed) 74:996–999. https://doi.org/10.1016/j.rec.2021.05.005
doi: 10.1016/j.rec.2021.05.005
Pascual-Figal DA, Bayes-Genis A, Díez-Díez M et al (2021) Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol 77:1747–1759. https://doi.org/10.1016/j.jacc.2021.02.028
doi: 10.1016/j.jacc.2021.02.028
Peng J, Yang Q, Li A-F et al (2016) Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE–/– mice. Oncotarget 7:76423–76436. https://doi.org/10.18632/oncotarget.13121
doi: 10.18632/oncotarget.13121
Pogribny IP, Beland FA (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 66:2249–2261. https://doi.org/10.1007/s00018-009-0015-5
doi: 10.1007/s00018-009-0015-5
Poon GYP, Watson CJ, Fisher DS et al (2021) Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat Genet 53:1597–1605. https://doi.org/10.1038/s41588-021-00957-1
doi: 10.1038/s41588-021-00957-1
Potus F, Pauciulo MW, Cook EK et al (2020) Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141:1986–2000. https://doi.org/10.1161/circulationaha.119.044320
doi: 10.1161/circulationaha.119.044320
Pronier E, Imanci A, Selimoglu-Buet D et al (2022) Macrophage migration inhibitory factor is overproduced through EGR1 in TET2low resting monocytes. Commun Biol 5:110. https://doi.org/10.1038/s42003-022-03057-w
doi: 10.1038/s42003-022-03057-w
Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. NEJM 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914
doi: 10.1056/NEJMoa1707914
Sano S, Oshima K, Wang Y et al (2018) CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res 123:335–341. https://doi.org/10.1161/circresaha.118.313225
doi: 10.1161/circresaha.118.313225
Sano S, Oshima K, Wang Y et al (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol 71:875–886. https://doi.org/10.1016/j.jacc.2017.12.037
doi: 10.1016/j.jacc.2017.12.037
Savola P, Kelkka T, Rajala HL et al (2017) Somatic mutations in clonally expanded cytotoxic T lymphocytes in patients with newly diagnosed rheumatoid arthritis. Nat Commun. https://doi.org/10.1038/ncomms15869
doi: 10.1038/ncomms15869
Scolari FL, Abelson S, Brahmbhatt DH et al (2022) Clonal haematopoiesis is associated with higher mortality in patients with cardiogenic shock. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2588
doi: 10.1002/ejhf.2588
Soudet S, Jedraszak G, Evrard O et al (2021) Is hematopoietic clonality of indetermined potential a risk factor for pulmonary embolism? TH Open 5:e338–e342. https://doi.org/10.1055/s-0041-1733856
doi: 10.1055/s-0041-1733856
Steensma DP, Bolton KL (2020) What to tell your patient with clonal hematopoiesis and why: insights from 2 specialized clinics. Blood 136:1623–1631. https://doi.org/10.1182/blood.2019004291
doi: 10.1182/blood.2019004291
Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16. https://doi.org/10.1182/blood-2015-03-631747
doi: 10.1182/blood-2015-03-631747
Svensson EC, Madar A, Campbell CD et al (2022) TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol 7:521–528. https://doi.org/10.1001/jamacardio.2022.0386
doi: 10.1001/jamacardio.2022.0386
Swirski FK (2017) From clonal haematopoiesis to the CANTOS trial. Nat Rev Cardiol 15:79–80. https://doi.org/10.1038/nrcardio.2017.208
doi: 10.1038/nrcardio.2017.208
van Zeventer IA, Salzbrunn JB, de Graaf AO et al (2021) Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged ≥ 80 years. Blood Adv 5:2115–2122. https://doi.org/10.1182/bloodadvances.2020004062
doi: 10.1182/bloodadvances.2020004062
Venugopal K, Feng Y, Shabashvili D et al (2021) Alterations to DNMT3A in hematologic malignancies. Cancer Res 81:254–263. https://doi.org/10.1158/0008-5472.CAN-20-3033
doi: 10.1158/0008-5472.CAN-20-3033
Wang W, Liu W, Fidler T et al (2018) Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 V617F mice. Circ Res 123:e35–e47. https://doi.org/10.1161/circresaha.118.313283
doi: 10.1161/circresaha.118.313283
Watson CJ, Papula AL, Poon GYP et al (2020) The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367:1449–1454. https://doi.org/10.1126/science.aay9333
doi: 10.1126/science.aay9333
Wolach O, Sellar RS, Martinod K et al (2018) Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan8292
doi: 10.1126/scitranslmed.aan8292
Wong TN, Miller CA, Jotte MRM et al (2018) Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun 9:455. https://doi.org/10.1038/s41467-018-02858-0
doi: 10.1038/s41467-018-02858-0
Yang Q, Li X, Li R et al (2016) Low shear stress inhibited endothelial cell autophagy through TET2 downregulation. Ann Biomed Eng 44:2218–2227. https://doi.org/10.1007/s10439-015-1491-4
doi: 10.1007/s10439-015-1491-4
Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. https://doi.org/10.1038/ncomms12484
doi: 10.1038/ncomms12484
Yu B, Roberts MB, Raffield LM et al (2021) Supplemental association of clonal hematopoiesis with incident heart failure. J Am Coll Cardiol 78:42–52. https://doi.org/10.1016/j.jacc.2021.04.085
doi: 10.1016/j.jacc.2021.04.085
Zhang CR, Nix D, Gregory M et al (2019) Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol 80:36-41.e3. https://doi.org/10.1016/j.exphem.2019.11.008
doi: 10.1016/j.exphem.2019.11.008
Zhang J, Tan P, Guo L et al (2019) p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene 38:1905–1919. https://doi.org/10.1038/s41388-018-0524-5
doi: 10.1038/s41388-018-0524-5
Zink F, Stacey SN, Norddahl GL et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752. https://doi.org/10.1182/blood-2017-02-769869
doi: 10.1182/blood-2017-02-769869