Identifying the optimal conditioning intensity for stem cell transplantation in patients with myelodysplastic syndrome: a machine learning analysis.


Journal

Bone marrow transplantation
ISSN: 1476-5365
Titre abrégé: Bone Marrow Transplant
Pays: England
ID NLM: 8702459

Informations de publication

Date de publication:
02 2023
Historique:
received: 24 06 2022
accepted: 01 11 2022
revised: 29 10 2022
pubmed: 15 11 2022
medline: 9 2 2023
entrez: 14 11 2022
Statut: ppublish

Résumé

A conditioning regimen is an essential prerequisite of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome (MDS). However, the optimal conditioning intensity for a patient may be difficult to establish. This study aimed to identify optimal conditioning intensity (reduced-intensity conditioning regimen [RIC] or myeloablative conditioning regimen [MAC]) for patients with MDS. Overall, 2567 patients with MDS who received their first HCT between 2009 and 2019 were retrospectively analyzed. They were divided into a training cohort and a validation cohort. Using a machine learning-based model, we developed a benefit score for RIC in the training cohort. The validation cohort was divided into a high-score and a low-score group, based on the median benefit score. The endpoint was progression-free survival (PFS). The benefit score for RIC was developed from nine baseline variables in the training cohort. In the validation cohort, the hazard ratios of the PFS in the RIC group compared to the MAC group were 0.65 (95% confidence interval [CI]: 0.48-0.90, P = 0.009) in the high-score group and 1.36 (95% CI: 1.06-1.75, P = 0.017) in the low-score group (P for interaction < 0.001). Machine-learning-based scoring can be useful for the identification of optimal conditioning regimens for patients with MDS.

Identifiants

pubmed: 36376472
doi: 10.1038/s41409-022-01871-8
pii: 10.1038/s41409-022-01871-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

186-194

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383:1358–74.
doi: 10.1056/NEJMra1904794
Platzbecker U. Treatment of MDS. Blood. 2019;133:1096–107.
doi: 10.1182/blood-2018-10-844696
de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62.
doi: 10.1182/blood-2016-06-724500
Gagelmann N, Kröger N. Dose intensity for conditioning in allogeneic hematopoietic cell transplantation: can we recommend “when and for whom” in 2021? Haematologica. 2021;106:1794–804.
doi: 10.3324/haematol.2020.268839
McDonald GB, Sandmaier BM, Mielcarek M, Sorror M, Pergam SA, Cheng G-S, et al. Survival, nonrelapse mortality, and relapse-related mortality after allogeneic hematopoietic cell transplantation: comparing 2003–2007 versus 2013–2017 cohorts. Ann Intern Med. 2020;172:229.
doi: 10.7326/M19-2936
Sengsayadeth S, Savani BN, Blaise D, Malard F, Nagler A, Mohty M. Reduced intensity conditioning allogeneic hematopoietic cell transplantation for adult acute myeloid leukemia in complete remission – a review from the Acute Leukemia Working Party of the EBMT. Haematologica. 2015;100:859–69.
doi: 10.3324/haematol.2015.123331
Kröger N, Iacobelli S, Franke G-N, Platzbecker U, Uddin R, Hübel K, et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome: a prospective Randomized Phase III Study of the EBMT (RICMAC Trial). J Clin Oncol. 2017;35:2157–64.
doi: 10.1200/JCO.2016.70.7349
Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35:1154–61.
doi: 10.1200/JCO.2016.70.7091
Rashidi A, Meybodi MA, Cao W, Chu H, Warlick ED, Devine S, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation in myelodysplastic syndromes: systematic review and meta-analysis. Biol Blood Marrow Transplant. 2020;26:e138–41.
doi: 10.1016/j.bbmt.2020.03.003
Shimoni A, Robin M, Iacobelli S, Beelen D, Mufti GJ, Ciceri F, et al. Allogeneic hematopoietic cell transplantation in patients with myelodysplastic syndrome using treosulfan based compared to other reduced‐intensity or myeloablative conditioning regimens. A report of the chronic malignancies working party of the EBMT. Br J Haematol. 2021;195:417–28.
doi: 10.1111/bjh.17817
Aoki K, Ishikawa T, Ishiyama K, Aoki J, Itonaga H, Fukuda T, et al. Allogeneic haematopoietic cell transplantation with reduced-intensity conditioning for elderly patients with advanced myelodysplastic syndromes: a nationwide study. Br J Haematol. 2015;168:463–6.
doi: 10.1111/bjh.13124
Shimomura Y, Hara M, Konuma T, Itonaga H, Doki N, Ozawa Y. et al. Allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome in adolescent and young adult patients. Bone Marrow Transplant. 2021;56:2510–7. https://doi.org/10.1038/s41409-021-01324-8 .
doi: 10.1038/s41409-021-01324-8
Basu S, Sussman JB, Hayward RA. Detecting heterogeneous treatment effects to guide personalized blood pressure treatment: a modeling study of randomized clinical trials. Ann Intern Med. 2017;166:354–60.
doi: 10.7326/M16-1756
Chen S, Tian L, Cai T, Yu M. A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics. 2017;73:1199–209.
doi: 10.1111/biom.12676
VanderWeele TJ, Knol MJ. Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions. Ann Intern Med. 2011;154:680–3.
doi: 10.7326/0003-4819-154-10-201105170-00008
Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. Lancet Diabetes Endocrinol. 2017;5:808–15.
doi: 10.1016/S2213-8587(17)30176-6
Huling JD, Yu M. Subgroup identification using the personalized package. J Stat Softw. 2021;98:1–60. https://doi.org/10.18637/jss.v098.i05 .
Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-Intensity Conditioning Regimen Workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2009;15:367–9.
doi: 10.1016/j.bbmt.2008.12.497
Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33.
doi: 10.1016/j.bbmt.2009.07.004
Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–9.
doi: 10.1182/blood-2005-05-2004
Stekhoven DJ, Bühlmann P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinforma Oxf Engl. 2012;28:112–8.
doi: 10.1093/bioinformatics/btr597
Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, et al. Comparison of imputation methods for missing laboratory data in medicine. BMJ Open. 2013;3:e002847.
doi: 10.1136/bmjopen-2013-002847
Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am J Epidemiol. 2014;179:764–74.
doi: 10.1093/aje/kwt312
Slade E, Naylor MG. A fair comparison of tree-based and parametric methods in multiple imputation by chained equations. Stat Med. 2020;39:1156–66.
doi: 10.1002/sim.8468
Atallah E, Logan B, Chen M, Cutler C, Deeg J, Jacoby M. et al. Comparison of patient age groups in transplantation for myelodysplastic syndrome: the medicare coverage with evidence development study. JAMA Oncol. 2020;6:486–93. https://doi.org/10.1001/jamaoncol.2019.5140 .
doi: 10.1001/jamaoncol.2019.5140
Gilleece MH, Labopin M, Yakoub-Agha I, Volin L, Socié G, Ljungman P, et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: a registry analysis of 2292 patients by the Acute Leukemia Working Party E. Am J Hematol. 2018;93:1142–52.
doi: 10.1002/ajh.25211
Gilleece MH, Labopin M, Savani BN, Yakoub-Agha I, Socié G, Gedde-Dahl T, et al. Allogeneic haemopoietic transplantation for acute myeloid leukaemia in second complete remission: a registry report by the Acute Leukaemia Working Party of the EBMT. Leukemia. 2020;34:87–99.
doi: 10.1038/s41375-019-0527-4
Saraceni F, Labopin M, Forcade E, Kröger N, Socié G, Niittyvuopio R, et al. Allogeneic stem cell transplant in patients with acute myeloid leukemia and karnofsky performance status score less than or equal to 80%: a study from the acute leukemia working party of the European Society for Blood and Marrow Transplantation (EBMT). Cancer Med. 2021;10:23–33.
doi: 10.1002/cam4.3593
Rambaldi A, Grassi A, Masciulli A, Boschini C, Micò MC, Busca A, et al. Busulfan plus cyclophosphamide versus busulfan plus fludarabine as a preparative regimen for allogeneic haemopoietic stem-cell transplantation in patients with acute myeloid leukaemia: an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2015;16:1525–36.
doi: 10.1016/S1470-2045(15)00200-4
Konuma T, Kondo T, Mizuno S, Doki N, Aoki J, Fukuda T, et al. Conditioning intensity for allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients with poor-prognosis cytogenetics in first complete remission. Biol Blood Marrow Transplant. 2020;26:463–71.
doi: 10.1016/j.bbmt.2019.09.025
Fein JA, Shimoni A, Labopin M, Shem-Tov N, Yerushalmi R, Magen H, et al. The impact of individual comorbidities on non-relapse mortality following allogeneic hematopoietic stem cell transplantation. Leukemia. 2018;32:1787–94.
doi: 10.1038/s41375-018-0185-y
Hourigan CS, Dillon LW, Gui G, Logan BR, Fei M, Ghannam J, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol. 2020;38:1273–83.
doi: 10.1200/JCO.19.03011
Passweg JR, Labopin M, Cornelissen J, Volin L, Socié G, Huynh A, et al. Conditioning intensity in middle-aged patients with AML in first CR: no advantage for myeloablative regimens irrespective of the risk group–an observational analysis by the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant. 2015;50:1063–8.
doi: 10.1038/bmt.2015.121
Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.
doi: 10.1056/NEJMoa1611604
Spyridonidis A, Labopin M, Savani BN, Niittyvuopio R, Blaise D, Craddock C, et al. Redefining and measuring transplant conditioning intensity in current era: a study in acute myeloid leukemia patients. Bone Marrow Transplant. 2020;55:1114–25.
doi: 10.1038/s41409-020-0803-y

Auteurs

Yoshimitsu Shimomura (Y)

Department of Hematology, Kobe City Hospital Organization Kobe City Medical Center General Hospital, Minamimati 2-1-1, Minatojima, Chuo-ku, Kobe, 650-0047, Japan. shimomura_0119@yahoo.co.jp.
Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. shimomura_0119@yahoo.co.jp.

Sho Komukai (S)

Division of Biomedical Statistics, Department of Integrated Medicine Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Tetsuhisa Kitamura (T)

Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Tomotaka Sobue (T)

Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Shuhei Kurosawa (S)

Division of Stem Cell and Molecular Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato-ku, Tokyo, 108-0071, Japan.

Noriko Doki (N)

Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan.

Yuta Katayama (Y)

Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, 1-9-6 Sendamachi, Naka-ku, Hiroshima, 730-8619, Japan.

Yukiyasu Ozawa (Y)

Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35, Michishita-tyo, Nakamura-ku, Nagoya, 453-8511, Japan.

Ken-Ichi Matsuoka (KI)

Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-0914, Japan.

Takashi Tanaka (T)

Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.

Shinichi Kako (S)

Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan.

Masashi Sawa (M)

Department of Hematology and Oncology, Anjo Kosei Hospital, 28 Higashihirokute, Anjo-cho, Anjo-shi, Aichi, 446-8602, Japan.

Yoshinobu Kanda (Y)

Division of Hematology, Jichi Medical University, 3311-1, Yaushiji, Shimotsuke, Tochigi, 329-0498, Japan.

Hirohisa Nakamae (H)

Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.

Hideyuki Nakazawa (H)

Department of Hematology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.

Yasunori Ueda (Y)

Department of Hematology/Oncology and Transfusion and Hemapheresis Center, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki-shi, Okayama, 710-8602, Japan.

Junya Kanda (J)

Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.

Takahiro Fukuda (T)

Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.

Yoshiko Atsuta (Y)

Japanese Data Center for Hematopoietic Cell Transplantation, 1-1 Yazakokariata, Nagakute, 480-1195, Japan.
Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, 1-1 Yazakokariata, Nagakute, 480-1195, Japan.

Ken Ishiyama (K)

Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi, Ishikawa, 920-8641, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH