Fingerprinting and identification of isolated plastic polymers with pyrolysis comprehensive two-dimensional gas chromatography and flame ionization detection.
Comprehensive two-dimensional gas chromatography
Flame ionization detection
Pyrolysis
Quadrupole mass spectrometry
Synthetic polymer analysis
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
30
08
2022
accepted:
03
11
2022
revised:
22
10
2022
medline:
16
11
2022
pubmed:
16
11
2022
entrez:
15
11
2022
Statut:
ppublish
Résumé
An approach using pyrolysis with comprehensive two-dimensional gas chromatography with flame ionization detection is introduced for identifying common isolated plastic polymers. A quadrupole mass spectrometer is employed as a parallel detector to aid method development and improve polymer identification in complex matrices. Common plastic polymers including polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide, poly(methyl methacrylate), styrene-butadiene rubber, and polyethylene terephthalate are accurately identified within a total analysis time of 45 min. A strategy to enhance compatibility of high-resolution capillary gas chromatography using a 150-µm internal diameter column technology and a larger internal volume microfurnace-based pyrolyzer is discussed. This strategy resulted in minimizing the band broadening effect caused by the pyrolyzer's internal volume and overcoming the slow pressure buildup when the sample is inserted into the furnace. Prolonged pressure buildup to reach a final pressure setting can cause a safety shutdown to the pneumatic control system. The developed approach is complementary to spectroscopic techniques by offering mass based, chemical composition analysis of plastics.
Identifiants
pubmed: 36378281
doi: 10.1007/s00216-022-04424-6
pii: 10.1007/s00216-022-04424-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2483-2492Informations de copyright
© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Gironi F, Piemonte V. Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources, Part A: Recovery, Utilization, Environ Effects. 2011;33:1949–59. https://doi.org/10.1080/15567030903436830 .
doi: 10.1080/15567030903436830
Echchakoui S, Barka N. Industry 40 and its impact in plastics industry: a literature review. J Ind Inf Integr. 2020;20:100172. https://doi.org/10.1016/j.jii.2020.100172 .
doi: 10.1016/j.jii.2020.100172
Paletta A, Filho WL, Balogun A, Foschi E, Bonoli A. Barriers and challenges to plastics valorization in the context of a circular economy: case studies from Italy. J Clean Prod. 2019;241:118149. https://doi.org/10.1016/j.jclepro.2019.118149 .
doi: 10.1016/j.jclepro.2019.118149
Lobo H, Bonilla JV. Handbook of plastic analysis. New York: Marcel Dekker; 2003.
doi: 10.1201/9780203911983
Thompson RN, Nau CA, Lawrence CH. Identification of vehicle tire rubber in roadway dust. Am Ind Hyg Assoc J. 1966;27:488–95. https://doi.org/10.1080/00028896609342461 .
doi: 10.1080/00028896609342461
pubmed: 5963619
Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro(nano) plastics: which are fit for purpose? Curr Opin Environ Sci Health. 2018;1:55–61. https://doi.org/10.1016/j.coesh.2017.11.001 .
doi: 10.1016/j.coesh.2017.11.001
Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics using focal plane array (FPA) FT-IR microscopy and image analysis. Anal Methods. 2017;9:1499–511. https://doi.org/10.1039/C6AY02476A .
doi: 10.1039/C6AY02476A
Cowger W, Gray A, Christiansen SH. Critical review of processing and classification techniques for images and spectra in microplastic research. Appl Spectrosc. 2020;74:989–1010. https://doi.org/10.1177/0003702820929064 .
doi: 10.1177/0003702820929064
pubmed: 32500727
Collard F, Gilbert B, Eppe G, Parmentier E, Das K. Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch Environ Contam Toxicol. 2015;69:331–9. https://doi.org/10.1007/s00244-015-0221-0 .
doi: 10.1007/s00244-015-0221-0
pubmed: 26289815
Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026 .
doi: 10.1016/j.marpolbul.2015.09.026
pubmed: 26455785
Wolff S, Kerpen J, Prediger J, Barkmann L, Muller L. Determination of the microplastics emission in the effluent of a municipal wastewater treatment plant using Raman microspectroscopy. Water Res X. 2019;2:100014. https://doi.org/10.1016/j.wroa.2018.100014 .
doi: 10.1016/j.wroa.2018.100014
pubmed: 31194068
Tsuge S, Okumoto T, Takeuchi T. Structural investigation of chlorinated polyethylenes by pyrolysis-gas chromatography. Macromolecules. 1969;2:200–2. https://doi.org/10.1021/ma60008a019 .
doi: 10.1021/ma60008a019
Tsuge S, Otani H, Watanabe C. Pyrolysis-GC/MS data book of synthetic polymers — pyrograms, thermograms, and MS of pyrolysates. Nederland: Elsevier; 2011.
Tsuge S, Takeuchi T. Vertical furnace-type sampling device for pyrolysis gas chromatography. Anal Chem. 1977;49:348–50. https://doi.org/10.1021/ac50010a044 .
doi: 10.1021/ac50010a044
Cauwenberghe LV, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: a review of techniques, occurrence, and effects. Mar Environ Res. 2015;111:5–17. https://doi.org/10.1016/j.marenvres.2015.06.007 .
doi: 10.1016/j.marenvres.2015.06.007
pubmed: 26095706
de Leeuw JW, de Leer EWB, Sinninghe Damste JS, Schuyl PJW. Screening of anthropogenic compound in polluted sediments and soils by flash evaporation/pyrolysis GC-MS. Anal Chem. 1986;58:1852–7. https://doi.org/10.1021/ac00121a055 .
doi: 10.1021/ac00121a055
Fabbri D, Trombini C, Vassura I. Analysis of polystyrene in polluted sediments by pyrolysis gas chromatography mass spectrometry. J Chromatogr Sci. 1998;36:600–4. https://doi.org/10.1093/chromsci/36.12.600 .
doi: 10.1093/chromsci/36.12.600
Fabbri D. Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna Lagoon. J Anal Appl Pyrolysis. 2001;58–59:361–70. https://doi.org/10.1016/S0165-2370(00)00170-4 .
doi: 10.1016/S0165-2370(00)00170-4
Guan X, Luong J, Yu Z, Jiang H. Quasi-stop-flow modulation strategy for comprehensive two-dimensional gas chromatography. Anal Chem. 2020;92:6251–6. https://doi.org/10.1021/acs.analchem.0c00814 .
doi: 10.1021/acs.analchem.0c00814
pubmed: 32281369
Biagini E, Lippi F, Tognotti L. Characterization of a lab-scale platinum filament pyrolyzer for studying the fast devolatilization of solid fuels. Fuel. 2006;85:2408–18. https://doi.org/10.1016/j.fuel.2006.06.002 .
doi: 10.1016/j.fuel.2006.06.002
Ericsson I. Influence of pyrolysis parameters on results in pyrolysis-gas chromatography. J Anal Appl Pyrol. 1985;8:73–86. https://doi.org/10.1016/0165-2370(85)80016-4 .
doi: 10.1016/0165-2370(85)80016-4
Wampler TP, Levy EJ. Reproducibility in pyrolysis: recent pyrolysis. J Anal Appl Pyrol. 1987;12:75–82. https://doi.org/10.1016/0165-2370(87)85058-1 .
doi: 10.1016/0165-2370(87)85058-1
Onishi A, Oguri N, Kim P. Development of a new injection system for Curie-point pyrolysis-gas chromatography. J Chromatogr Sci. 1993;31:380–3. https://doi.org/10.1093/chromsci/31.9.380 .
doi: 10.1093/chromsci/31.9.380
Buhler C, Simon W. Curie point pyrolysis gas chromatography. J Chromatogr Sci. 1970;8:323–9. https://doi.org/10.1093/chromsci/8.6.323 .
doi: 10.1093/chromsci/8.6.323
Buco S, Moragues M, Doumeng P, Noor A, Mille G. Analysis of polycyclic aromatic hydrocarbons in contaminated soil by Curie point pyrolysis coupled to gas chromatography-mass spectrometry, an alternative to conventional method. J Chromatogr A. 2004;1026:223–9. https://doi.org/10.1016/j.chroma.2003.11.065 .
doi: 10.1016/j.chroma.2003.11.065
pubmed: 14763749
White RL. Microfurnace pyrolysis injector for capillary gas chromatography. J Anal Appl Pyrol. 1991;18:269–76. https://doi.org/10.1016/0165-2370(91)87007-9 .
doi: 10.1016/0165-2370(91)87007-9
Jeknavorian AA, Mabud MA, Barry EF, Litzau JJ. Novel pyrolysis-gas chromatography/mass spectrometric techniques for the characterization of chemical additives in Portland cement and concrete. J Anal Appl Pyrol. 1998;46:85–100. https://doi.org/10.1016/S0165-2370(98)00073-4 .
doi: 10.1016/S0165-2370(98)00073-4
Pico Y, Barcelo D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics. Trends Anal Chem. 2020;130:115964. https://doi.org/10.1016/j.trac.2020.115964 .
doi: 10.1016/j.trac.2020.115964
Hosaka A, Watanabe C, Tsuge S. Development of new “flow-through” sample cup for the vertical micro-furnace pyrolyzer to reduce undesirable secondary reactions and band broadening of resulting pyrolysates. J Anal Appl Pyrol. 2007;78:452–5. https://doi.org/10.1016/j.jaap.2006.09.002 .
doi: 10.1016/j.jaap.2006.09.002