In mice and humans, brain microvascular contractility matures postnatally.
Brain microvessels
Cerebral blood flow
Microvessel contractility
Postnatal development
Vascular smooth muscle cell
Journal
Brain structure & function
ISSN: 1863-2661
Titre abrégé: Brain Struct Funct
Pays: Germany
ID NLM: 101282001
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
received:
29
04
2022
accepted:
25
10
2022
pubmed:
16
11
2022
medline:
25
2
2023
entrez:
15
11
2022
Statut:
ppublish
Résumé
Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (EC), vascular smooth muscle cells (VSMC) and fibroblasts (FB) follow specific molecular maturation programs over this time period. Focusing on VSMCs, we showed that the arteriolar VSMC network expands and becomes contractile resulting in a greater cerebral blood flow (CBF), with heterogenous developmental trajectories within cortical regions. Samples of the human brain cortex showed the same postnatal maturation process. Thus, the postnatal phase is a critical period during which arteriolar VSMC contractility required for vessel tone and brain perfusion is acquired and mature.
Identifiants
pubmed: 36380034
doi: 10.1007/s00429-022-02592-w
pii: 10.1007/s00429-022-02592-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
475-492Subventions
Organisme : Fondation pour la Recherche Médicale
ID : AJE20171039094 and PLP20170939025p60
Organisme : Fondation pour la Recherche Médicale
ID : RAD22005DFA
Organisme : Association Européenne contre les Leucodystrophies
ID : ELA2012-014C2B
Organisme : Fondation Maladies Rares
ID : 20170603
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Anderson AW, Marois R, Colson ER, Peterson BS, Duncan CC, Ehrenkranz RA, Schneider KC, Gore JC, Ment LR (2001) Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging 19(1):1–5. https://doi.org/10.1016/s0730-725x(00)00231-9
doi: 10.1016/s0730-725x(00)00231-9
pubmed: 11295339
Ando K, Tong L, Peng D, Vazquez-Liebanas E, Chiyoda H, He L, Liu J, Kawakami K, Mochizuki N, Fukuhara S, Grutzendler J, Betsholtz C (2022) KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling. Dev Cell 57(11):1383–1399. https://doi.org/10.1016/j.devcel.2022.04.019
doi: 10.1016/j.devcel.2022.04.019
pubmed: 35588738
Arichi T, Moraux A, Melendez A, Doria V, Groppo M, Merchant N, Combs S, Burdet E, Larkman DJ, Counsell SJ, Beckmann CF, Edwards AD (2010) Somatosensory cortical activation identified by functional MRI in preterm and term infants. Neuroimage 49(3):2063–2071. https://doi.org/10.1016/j.neuroimage.2009.10.038
doi: 10.1016/j.neuroimage.2009.10.038
pubmed: 19854281
Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455. https://doi.org/10.1177/0271678X15610340
doi: 10.1177/0271678X15610340
pubmed: 26661200
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7(1):16878. https://doi.org/10.1038/s41598-017-17204-5
doi: 10.1038/s41598-017-17204-5
pubmed: 29203879
pmcid: 5715110
Ben-Zvi A, Liebner S (2021) Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med. https://doi.org/10.1111/joim.13263
doi: 10.1111/joim.13263
pubmed: 33665890
Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellstrom M, Lindahl P, Betsholtz C (2006) Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J 20(10):1703–1705
doi: 10.1096/fj.05-4944fje
pubmed: 16807374
Bonney SK, Sullivan LT, Cherry TJ, Daneman R, Shih AY (2022) Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J Cereb Blood Flow Metab 42(6):966–978. https://doi.org/10.1177/0271678X211068528
doi: 10.1177/0271678X211068528
pubmed: 34929105
Boulay AC, Saubamea B, Decleves X, Cohen-Salmon M (2015) Purification of Mouse Brain Vessels. J vis Exp. https://doi.org/10.3791/53208
doi: 10.3791/53208
pubmed: 26574794
pmcid: 4692710
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096
doi: 10.1038/nbt.4096
pubmed: 29608179
pmcid: 6700744
Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 32(9):1659–1676. https://doi.org/10.1038/jcbfm.2012.84
doi: 10.1038/jcbfm.2012.84
pubmed: 22781330
pmcid: 3434628
Chasseigneaux S, Moraca Y, Cochois-Guegan V, Boulay AC, Gilbert A, Le Crom S, Blugeon C, Firmo C, Cisternino S, Laplanche JL, Curis E, Decleves X, Saubamea B (2018) Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Sci Rep 8(1):12272. https://doi.org/10.1038/s41598-018-30739-5
doi: 10.1038/s41598-018-30739-5
pubmed: 30116021
pmcid: 6095852
Coelho-Santos V, Shih AY (2020) Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip Rev Dev Biol 9(2):e363. https://doi.org/10.1002/wdev.363
doi: 10.1002/wdev.363
pubmed: 31576670
Coelho-Santos V, Berthiaume AA, Ornelas S, Stuhlmann H, Shih AY (2021) Imaging the construction of capillary networks in the neonatal mouse brain. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2100866118
doi: 10.1073/pnas.2100866118
pubmed: 34172585
pmcid: 8256089
Colonnese MT, Phillips MA, Constantine-Paton M, Kaila K, Jasanoff A (2008) Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 11(1):72–79. https://doi.org/10.1038/nn2017
doi: 10.1038/nn2017
pubmed: 18037883
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211
doi: 10.1038/nprot.2008.211
pubmed: 19131956
Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566. https://doi.org/10.1038/nature09513
doi: 10.1038/nature09513
pubmed: 20944625
pmcid: 3241506
Detre JA, Rao H, Wang DJ, Chen YF, Wang Z (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35(5):1026–1037. https://doi.org/10.1002/jmri.23581
doi: 10.1002/jmri.23581
pubmed: 22246782
pmcid: 3326188
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593
doi: 10.2174/138161208784705469
pubmed: 18673199
Dorrier CE, Jones HE, Pintaric L, Siegenthaler JA, Daneman R (2022) Emerging roles for CNS fibroblasts in health, injury and disease. Nat Rev Neurosci 23(1):23–34. https://doi.org/10.1038/s41583-021-00525-w
doi: 10.1038/s41583-021-00525-w
pubmed: 34671105
Ezan P, Andre P, Cisternino S, Saubamea B, Boulay AC, Doutremer S, Thomas MA, Quenech’du N, Giaume C, Cohen-Salmon M (2012) Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab 32(8):1457–1467. https://doi.org/10.1038/jcbfm.2012.45
doi: 10.1038/jcbfm.2012.45
pubmed: 22472609
pmcid: 3421093
Frosen J, Joutel A (2018) Smooth muscle cells of intracranial vessels: from development to disease. Cardiovasc Res 114(4):501–512
doi: 10.1093/cvr/cvy002
pubmed: 29351598
Hadjiargyrou M (2018) Mustn1: A Developmentally regulated pan-musculoskeletal cell marker and regulatory gene. Int J Mol Sci. https://doi.org/10.3390/ijms19010206
doi: 10.3390/ijms19010206
pubmed: 29329193
pmcid: 5796155
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60. https://doi.org/10.1038/nature13165
doi: 10.1038/nature13165
pubmed: 24670647
pmcid: 3976267
Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2(4):041402
doi: 10.1117/1.NPh.2.4.041402
pubmed: 26158016
pmcid: 4478963
Hartmann DA, Berthiaume AA, Grant RI, Harrill SA, Koski T, Tieu T, McDowell KP, Faino AV, Kelly AL, Shih AY (2021) Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci 24(5):633–645
doi: 10.1038/s41593-020-00793-2
pubmed: 33603231
pmcid: 8102366
He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C (2016) Analysis of the brain mural cell transcriptome. Sci Rep 6:35108. https://doi.org/10.1038/srep35108
doi: 10.1038/srep35108
pubmed: 27725773
pmcid: 5057134
Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055
doi: 10.1242/dev.126.14.3047
pubmed: 10375497
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm415
doi: 10.1093/nar/gkm415
pubmed: 18096622
pmcid: 2275093
Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376. https://doi.org/10.1038/nn2003
doi: 10.1038/nn2003
pubmed: 17965657
Kelly KK, MacPherson AM, Grewal H, Strnad F, Jones JW, Yu J, Pierzchalski K, Kane MA, Herson PS, Siegenthaler JA (2016) Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neurosci 17(1):49. https://doi.org/10.1186/s12868-016-0284-5
doi: 10.1186/s12868-016-0284-5
pubmed: 27422020
pmcid: 4947279
Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EM (2013) Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc Natl Acad Sci U S A 110(11):4380–4385. https://doi.org/10.1073/pnas.1212785110
doi: 10.1073/pnas.1212785110
pubmed: 23426630
pmcid: 3600493
Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110(12):1646–1660. https://doi.org/10.1161/CIRCRESAHA.111.259754
doi: 10.1161/CIRCRESAHA.111.259754
pubmed: 22679139
pmcid: 3392125
Kusaka T, Kawada K, Okubo K, Nagano K, Namba M, Okada H, Imai T, Isobe K, Itoh S (2004) Noninvasive optical imaging in the visual cortex in young infants. Hum Brain Mapp 22(2):122–132. https://doi.org/10.1002/hbm.20020
doi: 10.1002/hbm.20020
pubmed: 15108300
pmcid: 6871980
Lendahl U, Nilsson P, Betsholtz C (2019) Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 20(11):e48070. https://doi.org/10.15252/embr.201948070
doi: 10.15252/embr.201948070
pubmed: 31617312
pmcid: 6831996
Manberg A, Skene N, Sanders F, Trusohamn M, Remnestal J, Szczepinska A, Aksoylu IS, Lonnerberg P, Ebarasi L, Wouters S, Lehmann M, Olofsson J, von Gohren AI, Domaniku A, De Schaepdryver M, De Vocht J, Poesen K, Uhlen M, Anink J, Mijnsbergen C, Vergunst-Bosch H, Hubers A, Klappe U, Rodriguez-Vieitez E, Gilthorpe JD, Hedlund E, Harris RA, Aronica E, Van Damme P, Ludolph A, Veldink J, Ingre C, Nilsson P, Lewandowski SA (2021) Altered perivascular fibroblast activity precedes ALS disease onset. Nat Med 27(4):640–646. https://doi.org/10.1038/s41591-021-01295-9
doi: 10.1038/s41591-021-01295-9
pubmed: 33859435
pmcid: 7613336
Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T (2015) Do Vascular pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells? Stem Cells Dev. https://doi.org/10.1089/scd.2015.0039
doi: 10.1089/scd.2015.0039
pubmed: 25900222
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW (2015) ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 24(Pt B):111–125. https://doi.org/10.1016/j.arr.2015.07.007
doi: 10.1016/j.arr.2015.07.007
pubmed: 26226329
pmcid: 4661124
Nippert AR, Biesecker KR, Newman EA (2018) Mechanisms mediating functional hyperemia in the brain. Neuroscientist 24(1):73–83. https://doi.org/10.1177/1073858417703033
doi: 10.1177/1073858417703033
pubmed: 28403673
Noli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D (2015) Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Reports 5(6):946–953. https://doi.org/10.1016/j.stemcr.2015.10.006
doi: 10.1016/j.stemcr.2015.10.006
pubmed: 26584541
pmcid: 4682124
Ollion J, Cochennec J, Loll F, Escude C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841. https://doi.org/10.1093/bioinformatics/btt276
doi: 10.1093/bioinformatics/btt276
pubmed: 23681123
pmcid: 3702251
Oudart M, Tortuyaux R, Mailly P, Mazare N, Boulay AC, Cohen-Salmon M (2020) Astrodot - a new method for studying the spatial distribution of mRNA in astrocytes. J Cell Sci. https://doi.org/10.1242/jcs.239756
doi: 10.1242/jcs.239756
pubmed: 32079659
Perrenoud Q, Rossier J, Ferezou I, Geoffroy H, Gallopin T, Vitalis T, Rancillac A (2012) Activation of cortical 5-HT(3) receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front Neural Circuits 6:50. https://doi.org/10.3389/fncir.2012.00050
doi: 10.3389/fncir.2012.00050
pubmed: 22907992
pmcid: 3415676
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. https://doi.org/10.1016/j.cell.2014.10.010
doi: 10.1016/j.cell.2014.10.010
pubmed: 25417164
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: imagej for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z
doi: 10.1186/s12859-017-1934-z
pubmed: 29187165
pmcid: 5708080
Rungta RL, Chaigneau E, Osmanski BF, Charpak S (2018) Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99(2):362–375. https://doi.org/10.1016/j.neuron.2018.06.012
doi: 10.1016/j.neuron.2018.06.012
pubmed: 29937277
pmcid: 6069674
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA (2018) Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174(4):1015–1030. https://doi.org/10.1016/j.cell.2018.07.028
doi: 10.1016/j.cell.2018.07.028
pubmed: 30096299
pmcid: 6447408
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019
pubmed: 22743772
Sullender CT, Richards LM, He F, Luan L, Dunn AK (2022) Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging. J Neurosci Methods 366:109434. https://doi.org/10.1016/j.jneumeth.2021.109434
doi: 10.1016/j.jneumeth.2021.109434
pubmed: 34863840
Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7):e21800. https://doi.org/10.1371/journal.pone.0021800
doi: 10.1371/journal.pone.0021800
pubmed: 21789182
pmcid: 3138752
Taga G, Asakawa K, Maki A, Konishi Y, Koizumi H (2003) Brain imaging in awake infants by near-infrared optical topography. Proc Natl Acad Sci U S A 100(19):10722–10727. https://doi.org/10.1073/pnas.1932552100
doi: 10.1073/pnas.1932552100
pubmed: 12960368
pmcid: 196871
Toth-Heyn P, Cataldi L (2012) Vasoactive compounds in the neonatal period. Curr Med Chem 19(27):4633–4639. https://doi.org/10.2174/092986712803306330
doi: 10.2174/092986712803306330
pubmed: 22876900
Uranishi R, Baev NI, Kim JH, Awad IA (2001) Vascular smooth muscle cell differentiation in human cerebral vascular malformations. Neurosurgery 49(3):671–679. https://doi.org/10.1097/00006123-200109000-00027
doi: 10.1097/00006123-200109000-00027
pubmed: 11523679
Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480. https://doi.org/10.1038/nature25739
doi: 10.1038/nature25739
pubmed: 29443965
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res 45(W1):W130–W137. https://doi.org/10.1093/nar/gkx356
doi: 10.1093/nar/gkx356
pubmed: 28472511
pmcid: 5570149
Yu Y, Cai Z, Cui M, Nie P, Sun Z, Sun S, Chu S, Wang X, Hu L, Yi J, Shen L, He B (2015) The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice. Int J Mol Med 36(6):1547–1555. https://doi.org/10.3892/ijmm.2015.2375
doi: 10.3892/ijmm.2015.2375
pubmed: 26498924
pmcid: 4678158
Zehendner CM, Tsohataridis S, Luhmann HJ, Yang JW (2013) Developmental switch in neurovascular coupling in the immature rodent barrel cortex. PLoS ONE 8(11):e80749. https://doi.org/10.1371/journal.pone.0080749
doi: 10.1371/journal.pone.0080749
pubmed: 24224059
pmcid: 3818260
Zheng M, Cheng H, Banerjee I, Chen J (2010) ALP/Enigma PDZ-LIM domain proteins in the heart. J Mol Cell Biol 2(2):96–102. https://doi.org/10.1093/jmcb/mjp038
doi: 10.1093/jmcb/mjp038
pubmed: 20042479