CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 11 2022
16 11 2022
Historique:
received:
14
05
2020
accepted:
24
10
2022
entrez:
17
11
2022
pubmed:
18
11
2022
medline:
22
11
2022
Statut:
epublish
Résumé
Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.
Identifiants
pubmed: 36385105
doi: 10.1038/s41467-022-34476-2
pii: 10.1038/s41467-022-34476-2
pmc: PMC9668993
doi:
Substances chimiques
CREB-Binding Protein
EC 2.3.1.48
Heat-Shock Proteins
0
Histones
0
HSF2 protein, human
142297-91-4
Transcription Factors
0
EP300 protein, human
EC 2.3.1.48
E1A-Associated p300 Protein
EC 2.3.1.48
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7002Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2048-2053
pubmed: 28174271
Physiol Rev. 2011 Apr;91(2):603-49
pubmed: 21527733
J Cell Biol. 2012 Aug 20;198(4):623-36
pubmed: 22908312
Neuron. 2012 Apr 26;74(2):314-30
pubmed: 22542185
Biochemistry. 2009 Mar 17;48(10):2115-24
pubmed: 19220000
Cell Rep. 2020 Jan 14;30(2):583-597.e6
pubmed: 31940498
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1681-6
pubmed: 21205885
Front Neurosci. 2017 May 19;11:248
pubmed: 28579939
PLoS One. 2021 Oct 15;16(10):e0258766
pubmed: 34653234
Nat Commun. 2013;4:2660
pubmed: 24154492
Hum Mol Genet. 2003 Feb 15;12(4):441-50
pubmed: 12566391
Mol Cell Biol. 1993 Mar;13(3):1392-407
pubmed: 8441385
Nat Rev Mol Cell Biol. 2018 Jan;19(1):4-19
pubmed: 28852220
Sci Adv. 2017 May 31;3(5):e1603014
pubmed: 28580422
Front Mol Neurosci. 2018 Apr 30;11:142
pubmed: 29760652
Mol Cell Biol. 2015 Apr;35(8):1390-400
pubmed: 25645927
Dev Cell. 2010 Jan 19;18(1):114-25
pubmed: 20152182
EMBO J. 2002 Jun 3;21(11):2591-601
pubmed: 12032072
Neurosci Lett. 2020 Apr 23;725:134895
pubmed: 32147500
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24310-24316
pubmed: 31685606
Semin Cell Dev Biol. 2017 Sep;69:172-182
pubmed: 28694114
Nat Protoc. 2014 Oct;9(10):2329-40
pubmed: 25188634
Mol Cell Biol. 2010 Dec;30(24):5608-20
pubmed: 20937767
Genes Dev. 2006 Apr 1;20(7):836-47
pubmed: 16600913
Mol Neurobiol. 2020 Sep;57(9):3685-3701
pubmed: 32562237
Genesis. 2003 May;36(1):48-61
pubmed: 12748967
Mol Cell Biol. 2015 Jul;35(14):2530-40
pubmed: 25963659
Nat Commun. 2017 Feb 13;8:14405
pubmed: 28194040
Stem Cell Res. 2018 Jul;30:130-140
pubmed: 29883886
Curr Protoc Cell Biol. 2012 Jun;Chapter 8:Unit8.8
pubmed: 23129118
Curr Cancer Drug Targets. 2011 Mar;11(3):239-53
pubmed: 21247388
Nat Struct Mol Biol. 2016 Feb;23(2):147-54
pubmed: 26727490
Cell. 2014 Feb 27;156(5):975-85
pubmed: 24581496
Clin Genet. 2015 Nov;88(5):431-40
pubmed: 25388907
FEBS Lett. 2013 Aug 19;587(16):2506-11
pubmed: 23831576
Hum Genet. 1993 Jul;91(6):538-46
pubmed: 8340107
J Pediatr Genet. 2015 Sep;4(3):177-86
pubmed: 27617129
Mol Cell. 2011 Oct 21;44(2):325-40
pubmed: 21906983
Nat Struct Mol Biol. 2013 Sep;20(9):1040-6
pubmed: 23934153
J Biol Chem. 2002 Nov 8;277(45):43168-74
pubmed: 12205094
Nat Rev Mol Cell Biol. 2010 Aug;11(8):545-55
pubmed: 20628411
Front Cell Neurosci. 2019 Jun 04;13:244
pubmed: 31213986
Dev Cell. 2010 Mar 16;18(3):472-9
pubmed: 20230753
Chem Biol. 2010 May 28;17(5):471-82
pubmed: 20534345
Cell Rep. 2017 Apr 4;19(1):50-59
pubmed: 28380362
EMBO Mol Med. 2014 Jul 15;6(8):1043-61
pubmed: 25027850
J Biol Chem. 2014 May 2;289(18):12705-15
pubmed: 24619424
Mol Cell Proteomics. 2011 Oct;10(10):M111.013284
pubmed: 21890473
Hum Mol Genet. 2008 Sep 15;17(18):2776-89
pubmed: 18558631
Science. 2003 Apr 11;300(5617):342-4
pubmed: 12690203
Mol Cell Biol. 2002 Apr;22(7):1961-70
pubmed: 11884585
Nat Struct Mol Biol. 2018 Jul;25(7):631-640
pubmed: 29967540
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3388-97
pubmed: 23959860
Cell Rep. 2017 Mar 14;18(11):2702-2714
pubmed: 28297673
Chem Rev. 2015 Mar 25;115(6):2419-52
pubmed: 25594381
Nucleic Acids Res. 2014 Feb;42(4):2112-25
pubmed: 24253305
Nat Rev Neurosci. 2015 Sep;16(9):551-63
pubmed: 26289574
J Biol Chem. 2007 Mar 9;282(10):7077-86
pubmed: 17213196
Cell Adh Migr. 2015;9(3):183-92
pubmed: 25869655
Clin Genet. 2019 Mar;95(3):420-426
pubmed: 30633342
Cell Stem Cell. 2018 Jan 4;22(1):128-137.e9
pubmed: 29276142
J Autism Dev Disord. 2017 Nov;47(11):3321-3332
pubmed: 28748333
Cell. 2021 Apr 15;184(8):2084-2102.e19
pubmed: 33765444
Neuron. 2014 May 7;82(3):560-72
pubmed: 24726381
Mol Biol Cell. 2009 Mar;20(5):1340-7
pubmed: 19129477
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2392-7
pubmed: 9122205
J Mol Biol. 2015 Dec 4;427(24):3793-816
pubmed: 26482101
Neuron. 2004 Oct 14;44(2):279-93
pubmed: 15473967
Cell. 1997 Dec 12;91(6):741-52
pubmed: 9413984
Genes Dev. 2018 Jun 1;32(11-12):763-780
pubmed: 29899142
Prog Mol Biol Transl Sci. 2014;128:139-76
pubmed: 25410544
J Mol Biol. 2004 Mar 26;337(3):521-34
pubmed: 15019774