cIAP1/TRAF2 interplay promotes tumor growth through the activation of STAT3.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
01 2023
Historique:
received: 10 03 2022
accepted: 04 11 2022
revised: 26 10 2022
pubmed: 19 11 2022
medline: 17 1 2023
entrez: 18 11 2022
Statut: ppublish

Résumé

Cellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2. However, the cIAP1/TRAF2 complex exists, independently of receptor engagement, in several subcellular compartments. The present work strengthens the importance of TRAF2 in the oncogenic properties of cIAP1. cIAPs-deficient mouse embryonic fibroblasts (MEFs) were transformed using the HRas-V12 oncogene. Re-expression of cIAP1 enhanced tumor growth in a nude mice xenograft model, and promoted lung tumor nodes formation. Deletion or mutation of the TRAF2-binding site completely abolished the oncogenic properties of cIAP1. Further, cIAP1 mediated the clustering of TRAF2, which was sufficient to stimulate tumor growth. Our TRAF2 interactome analysis showed that cIAP1 was critical for TRAF2 to bind to its protein partners. Thus, cIAP1 and TRAF2 would be two essential subunits of a signaling complex promoting a pro-tumoral signal. cIAP1/TRAF2 promoted the activation of the canonical NF-κB and ERK1/2 signaling pathways. NF-κB-dependent production of IL-6 triggered the activation of the JAK/STAT3 axis in an autocrine manner. Inhibition or downregulation of STAT3 specifically compromised the growth of cIAP1-restored MEFs but not that of MEFs expressing a cIAP1-mutant and treating mice with the STAT3 inhibitor niclosamide completely abrogated cIAP1/TRAF2-mediated tumor growth. Altogether, we demonstrate that cIAP1/TRAF2 binding is essential to promote tumor growth via the activation of the JAK/STAT3 signaling pathway.

Identifiants

pubmed: 36400972
doi: 10.1038/s41388-022-02544-y
pii: 10.1038/s41388-022-02544-y
doi:

Substances chimiques

TNF Receptor-Associated Factor 2 0
NF-kappa B 0
Inhibitor of Apoptosis Proteins 0
STAT3 protein, human 0
STAT3 Transcription Factor 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

198-208

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243–52.
Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and disease. Genes Immun. 2019;20:641–50.
doi: 10.1038/s41435-019-0078-8
Dumetier B, Zadoroznyj A, Dubrez L IAP-mediated protein ubiquitination in regulating cell signaling. Cells 2020;9:1118.
Zadoroznyj A, Dubrez L Cytoplasmic and nuclear functions of cIAP1. Biomolecules 2022;12:322.
Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006;125:1253–67.
doi: 10.1016/j.cell.2006.05.030
Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ, et al. MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 2009;69:2559–67.
doi: 10.1158/0008-5472.CAN-08-2929
Cheng L, Zhou Z, Flesken-Nikitin A, Toshkov IA, Wang W, Camps J, et al. Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2, and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene 2010;29:5700–11.
doi: 10.1038/onc.2010.300
Jin J, Xiao Y, Hu H, Zou Q, Li Y, Gao Y, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun. 2015;6:5930.
doi: 10.1038/ncomms6930
Yin Q, Lamothe B, Darnay BG, Wu H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry. 2009;48:10558–67.
doi: 10.1021/bi901462e
Dhillon B, Aleithan F, Abdul-Sater Z, Abdul-Sater AA. The evolving role of TRAFs in mediating inflammatory responses. Front Immunol. 2019;10:104.
doi: 10.3389/fimmu.2019.00104
Marivin A, Berthelet J, Cartier J, Paul C, Gemble S, Morizot A, et al. cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation. Oncogene 2014;33:5534–45.
doi: 10.1038/onc.2013.499
Vischioni B, Giaccone G, Span SW, Kruyt FA, Rodriguez JA. Nuclear shuttling and TRAF2-mediated retention in the cytoplasm regulate the subcellular localization of cIAP1 and cIAP2. Exp Cell Res. 2004;298:535–48.
doi: 10.1016/j.yexcr.2004.04.040
Zhou AY, Shen RR, Kim E, Lock YJ, Xu M, Chen ZJ, et al. IKKepsilon-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep. 2013;3:724–33.
doi: 10.1016/j.celrep.2013.01.031
Dupoux A, Cartier J, Cathelin S, Filomenko R, Solary E, Dubrez-Daloz L. cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 2009;113:175–85.
doi: 10.1182/blood-2008-02-137919
Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 controls death receptor-induced Caspase-8 processing and facilitates proinflammatory signaling. Front Immunol. 2019;10:2024.
doi: 10.3389/fimmu.2019.02024
Mace PD, Smits C, Vaux DL, Silke J, Day CL. Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol. 2010;400:8–15.
doi: 10.1016/j.jmb.2010.04.055
Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010;38:101–13.
doi: 10.1016/j.molcel.2010.03.009
Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13:1297–308.
doi: 10.1101/gad.13.10.1297
Tang Z, Li C, Kang B, Gao G, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.
doi: 10.1093/nar/gkx247
Csomos RA, Brady GF, Duckett CS. Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. J Biol Chem. 2009;284:20531–9.
doi: 10.1074/jbc.M109.029983
Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol. 2008;9:1364–70.
doi: 10.1038/ni.1678
Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002;416:345–7.
doi: 10.1038/416345a
Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008;321:663–8.
doi: 10.1126/science.1157340
Shu HB, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA. 1996;93:13973–8.
doi: 10.1073/pnas.93.24.13973
Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharm. 2016;116:1–10.
doi: 10.1016/j.bcp.2016.03.009
Ceccarelli A, Di Venere A, Nicolai E, De Luca A, Minicozzi V, Rosato N, et al. TNFR-associated Factor-2 (TRAF2): Not only a trimer. Biochemistry 2015;54:6153–61.
doi: 10.1021/acs.biochem.5b00674
Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell. 1999;4:321–30.
doi: 10.1016/S1097-2765(00)80334-2
Park HH. Structure of TRAF family: Current understanding of receptor recognition. Front Immunol. 2018;9:1999.
doi: 10.3389/fimmu.2018.01999
Peng C, Zhu F, Wen W, Yao K, Li S, Zykova T, et al. Tumor necrosis factor receptor-associated factor family protein 2 is a key mediator of the epidermal growth factor-induced ribosomal S6 kinase 2/cAMP-responsive element-binding protein/Fos protein signaling pathway. J Biol Chem. 2012;287:25881–92.
doi: 10.1074/jbc.M112.359521
Dubrez L, Berthelet J, Glorian V. IAP proteins as targets for drug development in oncology. OncoTargets Ther. 2013;9:1285–304.
doi: 10.2147/OTT.S33375
Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016;5:15.
Vu NT, Park MA, Shultz MD, Bulut GB, Ladd AC, Chalfant CE. Caspase-9b interacts directly with cIAP1 to drive agonist-independent activation of NF-κB and lung tumorigenesis. Cancer Res. 2016;76:2977–89.
doi: 10.1158/0008-5472.CAN-15-2512
Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J, et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell. 2007;28:914–22.
doi: 10.1016/j.molcel.2007.10.027
Li H, Fang Y, Niu C, Cao H, Mi T, Zhu H, et al. Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Proc Natl Acad Sci USA. 2018;115:E9317–24.
Bishop GA, Abdul-Sater AA, Watts TH. Editorial: TRAF proteins in health and disease. Front Immunol. 2019;10:326.
doi: 10.3389/fimmu.2019.00326
Sondarva G, Kundu CN, Mehrotra S, Mishra R, Rangasamy V, Sathyanarayana P, et al. TRAF2-MLK3 interaction is essential for TNF-alpha-induced MLK3 activation. Cell Res. 2010;20:89–98.
doi: 10.1038/cr.2009.125
Korchnak AC, Zhan Y, Aguilar MT, Chadee DN. Cytokine-induced activation of mixed lineage kinase 3 requires TRAF2 and TRAF6. Cell Signal. 2009;21:1620–5.
doi: 10.1016/j.cellsig.2009.06.008
Zhao Y, Conze DB, Hanover JA, Ashwell JD. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem. 2007;282:7777–82.
doi: 10.1074/jbc.M609146200
Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell. 1998;2:389–95.
doi: 10.1016/S1097-2765(00)80283-X
Chadee DN, Yuasa T, Kyriakis JM. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol. 2002;22:737–49.
doi: 10.1128/MCB.22.3.737-749.2002
Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol Med. 2018;24:49–65.
doi: 10.1016/j.molmed.2017.11.002
Dogan T, Harms GS, Hekman M, Karreman C, Oberoi TK, Alnemri ES, et al. X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nat Cell Biol. 2008;10:1447–55.
doi: 10.1038/ncb1804
Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, and TRAF3 and the kinase NIK. Nat Immunol. 2008;9:1371–8.
doi: 10.1038/ni.1676
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.
doi: 10.1038/nrclinonc.2018.8
Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J, et al. Genetic alterations of TRAF proteins in human cancers. Front Immunol. 2018;9:2111.
doi: 10.3389/fimmu.2018.02111
Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, et al. Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ. 2008;15:859–66.
doi: 10.1038/cdd.2008.5
Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015;15:2597–601.
doi: 10.1002/pmic.201400515

Auteurs

Baptiste Dumétier (B)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Aymeric Zadoroznyj (A)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Jean Berthelet (J)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.
Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.

Sébastien Causse (S)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Jennifer Allègre (J)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Pauline Bourgeois (P)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Florine Cattin (F)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.

Cindy Racoeur (C)

LIIC, EA7269, Université de Bourgogne-Franche-Comté, 21000, Paris, France.
Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000, Paris, France.

Catherine Paul (C)

LIIC, EA7269, Université de Bourgogne-Franche-Comté, 21000, Paris, France.
Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000, Paris, France.

Carmen Garrido (C)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France.
Anticancer Center Georges François Leclerc-Unicancer, Dijon, France.

Laurence Dubrez (L)

Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, LabEx LIpSTIC, Team with the label of excellence from «la ligue national contre le Cancer», 21000, Dijon, France. ldubrez@u-bourgogne.fr.
Université de Bourgogne-Franche-Comté, 21000, Dijon, France. ldubrez@u-bourgogne.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH