Controlling Floquet states on ultrashort time scales.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 Nov 2022
19 Nov 2022
Historique:
received:
06
05
2022
accepted:
14
11
2022
pubmed:
20
11
2022
medline:
20
11
2022
entrez:
19
11
2022
Statut:
epublish
Résumé
The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.
Identifiants
pubmed: 36402766
doi: 10.1038/s41467-022-34973-4
pii: 10.1038/s41467-022-34973-4
pmc: PMC9675778
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7103Subventions
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 848411
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
ID : 2017RKWTMY
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-4380
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : AdG-694097
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 848411
Informations de copyright
© 2022. The Author(s).
Références
Science. 2013 Oct 25;342(6157):453-7
pubmed: 24159040
Nature. 2014 Nov 13;515(7526):237-40
pubmed: 25391960
Nature. 2013 Apr 11;496(7444):196-200
pubmed: 23579677
Nat Commun. 2021 Feb 15;12(1):1021
pubmed: 33589638
Phys Rev Lett. 2002 Apr 29;88(17):173904
pubmed: 12005757
Nature. 2016 Feb 25;530(7591):461-4
pubmed: 26855424
Rev Sci Instrum. 2009 Dec;80(12):123109
pubmed: 20059133
J Phys Condens Matter. 2021 Jul 05;33(35):
pubmed: 33951618
Rep Prog Phys. 2022 May 05;85(6):
pubmed: 35294930
Science. 2016 Aug 26;353(6302):916-9
pubmed: 27563093
Nat Commun. 2020 May 6;11(1):2230
pubmed: 32376985
Nature. 2022 Jan;601(7893):354-359
pubmed: 35046602
Nature. 2020 Jul;583(7815):232-236
pubmed: 32641815
Phys Rev Lett. 1996 Apr 1;76(14):2468-2471
pubmed: 10060707
Nat Commun. 2015 May 11;6:7047
pubmed: 25958840
Nat Commun. 2018 Feb 12;9(1):638
pubmed: 29434265
Opt Express. 2018 Mar 19;26(6):6771-6784
pubmed: 29609365
Nano Lett. 2018 Feb 14;18(2):1535-1542
pubmed: 29361223
Nat Phys. 2020 Jan;16(1):38-41
pubmed: 31915458
Nano Lett. 2021 Jun 23;21(12):5028-5035
pubmed: 34082532