The role of immune profile in predicting outcomes in cancer patients treated with immunotherapy.
chemokines
cytokines
immunotherapy
soluble immune check-points
tumor biomarker
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2022
2022
Historique:
received:
20
06
2022
accepted:
22
09
2022
entrez:
21
11
2022
pubmed:
22
11
2022
medline:
23
11
2022
Statut:
epublish
Résumé
Despite the efficacy of immunotherapy, only a small percentage of patients achieves a long-term benefit in terms of overall survival. The aim of this study was to define an immune profile predicting the response to immune checkpoint inhibitors (ICIs). Patients with advanced solid tumors, who underwent ICI treatment were enrolled in this prospective study. Blood samples were collected at the baseline. Thirteen soluble immune checkpoints, 3 soluble adhesion molecules, 5 chemokines and 11 cytokines were analyzed. The results were associated with oncological outcomes. Regardless of tumor type, patients with values of sTIM3, IFNα, IFNγ, IL1β, IL1α, IL12p70, MIP1β, IL13, sCD28, sGITR, sPDL1, IL10 and TNFα below the median had longer overall survival (p<0.05). By using cluster analysis and grouping the patients according to the trend of the molecules, two clusters were found. Cluster A had a significantly higher mean progression free survival (Cluster A=11.9 months vs Cluster B=3.5 months, p<0.01), a higher percentage of disease stability (Cluster A=34.5% vs. Cluster B=0%, p<0.05) and a lower percentage of disease progression (Cluster A=55.2% vs. Cluster B = 94.4%, p=0.04). The combined evaluation of soluble molecules, rather than a single circulating factor, may be more suitable to represent the fitness of the immune system status in each patient and could allow to identify two different prognostic and predictive outcome profiles.
Sections du résumé
Background
Despite the efficacy of immunotherapy, only a small percentage of patients achieves a long-term benefit in terms of overall survival. The aim of this study was to define an immune profile predicting the response to immune checkpoint inhibitors (ICIs).
Methods
Patients with advanced solid tumors, who underwent ICI treatment were enrolled in this prospective study. Blood samples were collected at the baseline. Thirteen soluble immune checkpoints, 3 soluble adhesion molecules, 5 chemokines and 11 cytokines were analyzed. The results were associated with oncological outcomes.
Results
Regardless of tumor type, patients with values of sTIM3, IFNα, IFNγ, IL1β, IL1α, IL12p70, MIP1β, IL13, sCD28, sGITR, sPDL1, IL10 and TNFα below the median had longer overall survival (p<0.05). By using cluster analysis and grouping the patients according to the trend of the molecules, two clusters were found. Cluster A had a significantly higher mean progression free survival (Cluster A=11.9 months vs Cluster B=3.5 months, p<0.01), a higher percentage of disease stability (Cluster A=34.5% vs. Cluster B=0%, p<0.05) and a lower percentage of disease progression (Cluster A=55.2% vs. Cluster B = 94.4%, p=0.04).
Conclusion
The combined evaluation of soluble molecules, rather than a single circulating factor, may be more suitable to represent the fitness of the immune system status in each patient and could allow to identify two different prognostic and predictive outcome profiles.
Identifiants
pubmed: 36405727
doi: 10.3389/fimmu.2022.974087
pmc: PMC9671166
doi:
Substances chimiques
Immune Checkpoint Inhibitors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
974087Informations de copyright
Copyright © 2022 Botticelli, Pomati, Cirillo, Scagnoli, Pisegna, Chiavassa, Rossi, Schinzari, Tortora, Di Pietro, Cerbelli, Di Filippo, Amirhassankhani, Scala, Zizzari, Cortesi, Tomao, Nuti, Mezi and Marchetti.
Déclaration de conflit d'intérêts
PM has/had a consultant/advisory role for BMS, Roche, Genentech, MSD, Novartis, Amgen, Merck Serono, Pierre Fabre, and Incyte. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Cancer Cell. 2020 Oct 12;38(4):500-515.e3
pubmed: 32916126
Oncotarget. 2017 Jun 27;8(26):42149-42158
pubmed: 28178674
J Clin Oncol. 2015 Jun 10;33(17):1889-94
pubmed: 25667295
N Engl J Med. 2015 Jan 22;372(4):320-30
pubmed: 25399552
Ann Surg Oncol. 2016 Feb;23(2):694-702
pubmed: 26464193
Biomark Res. 2020 Sep 29;8:49
pubmed: 33005420
J Exp Med. 2010 Sep 27;207(10):2175-86
pubmed: 20819923
Int J Cancer. 2021 Jan 1;148(1):211-225
pubmed: 32875568
J Exp Med. 1997 Feb 3;185(3):393-403
pubmed: 9053440
Adv Immunol. 2006;90:51-81
pubmed: 16730261
Clin Cancer Res. 2014 Nov 1;20(21):5384-91
pubmed: 25204552
J Pers Med. 2021 Jul 10;11(7):
pubmed: 34357118
Ann Oncol. 2021 Jul;32(7):881-895
pubmed: 33894335
N Engl J Med. 2016 Nov 10;375(19):1856-1867
pubmed: 27718784
Crit Rev Oncol Hematol. 2020 Sep;153:103041
pubmed: 32629362
J Cancer Res Clin Oncol. 2020 Nov;146(11):3025-3036
pubmed: 32583235
Cancer Immunol Immunother. 2021 Sep;70(9):2669-2679
pubmed: 33624146
Biomed Res Int. 2020 Jul 16;2020:8910183
pubmed: 32724815
Front Oncol. 2020 Jan 21;9:1554
pubmed: 32039024
Scand J Immunol. 2017 Nov;86(5):361-367
pubmed: 28930374
Transplant Rev. 1976;28:3-16
pubmed: 766327
Front Immunol. 2021 Apr 12;12:665147
pubmed: 33912192
Eur J Cancer. 2017 Sep;82:56-65
pubmed: 28648699
Onco Targets Ther. 2018 Aug 13;11:4781-4784
pubmed: 30147330
Cancer. 2020 Sep 15;126(18):4156-4167
pubmed: 32673417
Front Immunol. 2020 Jul 07;11:1243
pubmed: 32733441
Cancer Sci. 2016 Sep;107(9):1193-7
pubmed: 27297395
J Immunother Cancer. 2019 Nov 29;7(1):334
pubmed: 31783776
BMC Cancer. 2017 May 30;17(1):384
pubmed: 28558708
Cancer Immunol Res. 2017 Jun;5(6):480-492
pubmed: 28522460
Lung Cancer. 2019 Jun;132:107-113
pubmed: 31097082
Eur Urol. 2017 Dec;72(6):962-971
pubmed: 28262413
Ann Oncol. 2020 Jan;31(1):144-152
pubmed: 31912789
Cancer Lett. 2017 Mar 28;389:49-58
pubmed: 28041977
Cancer Immunol Immunother. 2018 Nov;67(11):1673-1683
pubmed: 30128737
JAMA Netw Open. 2019 Jul 3;2(7):e197621
pubmed: 31339548
Biomed Pharmacother. 2020 Sep;129:110457
pubmed: 32887027
Lancet. 2019 Nov 23;394(10212):1915-1928
pubmed: 31679945
Bioinformatics. 2002 Jan;18(1):207-8
pubmed: 11836235
Sci Rep. 2020 Feb 25;10(1):3392
pubmed: 32099055
Cancer Immunol Immunother. 2019 Mar;68(3):353-363
pubmed: 30506460
Ann Oncol. 2017 Aug 01;28(8):1988-1995
pubmed: 28595336
J Pers Med. 2020 Nov 04;10(4):
pubmed: 33158018
Vaccines (Basel). 2020 Apr 28;8(2):
pubmed: 32353934
Nat Rev Immunol. 2020 Apr;20(4):209-215
pubmed: 31965064
Oncogene. 2019 Mar;38(13):2380-2393
pubmed: 30518877
Cancers (Basel). 2020 Sep 14;12(9):
pubmed: 32937860
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
pubmed: 9843981
Front Immunol. 2019 Mar 29;10:617
pubmed: 30984188
Lung Cancer. 2020 Oct;148:1-11
pubmed: 32768804
J Immunother Cancer. 2020 Apr;8(1):
pubmed: 32350118
Cancer Immunol Immunother. 2020 Dec;69(12):2533-2546
pubmed: 32577816
Lancet Oncol. 2019 Jul;20(7):924-937
pubmed: 31122901
Lancet Oncol. 2020 Dec;21(12):1563-1573
pubmed: 33284113
Immunogenetics. 1994;39(3):213-7
pubmed: 7506235
In Vivo. 2022 Jul-Aug;36(4):1881-1886
pubmed: 35738615
Nat Commun. 2016 Feb 17;7:10501
pubmed: 26883990
Thorac Cancer. 2022 Jan;13(2):219-227
pubmed: 34825500
Br J Cancer. 2018 Feb 20;118(4):566-576
pubmed: 29169181
Cancer Immunol Immunother. 2019 Jul;68(7):1179-1185
pubmed: 31175402
Ann Surg Oncol. 2019 Mar;26(3):876-883
pubmed: 30565045
Clin Cancer Res. 2022 Mar 01;28(5):1027-1037
pubmed: 34980602
J Exp Med. 1991 Sep 1;174(3):561-9
pubmed: 1714933
J Biol Chem. 1998 May 22;273(21):13353-8
pubmed: 9582383
Nat Immunol. 2001 Mar;2(3):261-8
pubmed: 11224527
J Immunother Cancer. 2018 Oct 17;6(1):107
pubmed: 30333065
Science. 2015 Apr 3;348(6230):56-61
pubmed: 25838373