Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
received:
31
07
2021
accepted:
19
09
2022
pubmed:
22
11
2022
medline:
15
12
2022
entrez:
21
11
2022
Statut:
ppublish
Résumé
Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%
Identifiants
pubmed: 36411364
doi: 10.1038/s41588-022-01208-7
pii: 10.1038/s41588-022-01208-7
pmc: PMC9729101
doi:
Substances chimiques
ABCA1 protein, human
0
Adenosine Triphosphatases
EC 3.6.1.-
ATP Binding Cassette Transporter 1
0
ATP8B4 protein, human
EC 3.6.1.-
SORL1 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1786-1794Subventions
Organisme : NIA NIH HHS
ID : U24 AG021886
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00024/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : U24 AG056270
Pays : United States
Organisme : Medical Research Council
ID : G0701075
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0901254
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : R00 AG068271
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : Medical Research Council
ID : MR/N026004/1
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006).
doi: 10.1001/archpsyc.63.2.168
Bellenguez, C. et al. New insights on the genetic etiology of Alzheimer’s and related dementias. Nat. Genet. 54, 412–436 (2022).
doi: 10.1038/s41588-022-01024-z
Holstege, H. et al. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur. J. Hum. Genet. 25, 973–981 (2017).
doi: 10.1038/ejhg.2017.87
Nicolas, G. et al. SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease. Mol. Psychiatry 21, 831–836 (2016).
doi: 10.1038/mp.2015.121
Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet Neurol. 14, 814–822 (2015).
doi: 10.1016/S1474-4422(15)00133-7
Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).
doi: 10.1056/NEJMoa1211103
Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).
doi: 10.1056/NEJMoa1211851
Bellenguez, C. et al. Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol. Aging 59, 220 e1-220.e9 (2017).
doi: 10.1016/j.neurobiolaging.2017.07.001
Gao, L. et al. Identification of rare variants in ATP8B4 as a risk factor for systemic sclerosis by whole-exome sequencing. Arthritis Rheumatol. 68, 191–200 (2016).
doi: 10.1002/art.39449
Wahrle, S. E. et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Invest. 118, 671–682 (2008).
Koldamova, R., Staufenbiel, M. & Lefterov, I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 Mice. J. Biol. Chem. 280, 43224–43235 (2005).
doi: 10.1074/jbc.M504513200
Nordestgaard, L. T., Tybjaerg-Hansen, A., Nordestgaard, B. G. & Frikke-Schmidt, R. Loss-of-function mutation in ABCA1 and risk of Alzheimer’s disease and cerebrovascular disease. Alzheimers Dement. 11, 1430–1438 (2015).
doi: 10.1016/j.jalz.2015.04.006
Saftig, P. & Lichtenthaler, S. F. The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog. Neurobiol. 135, 1–20 (2015).
doi: 10.1016/j.pneurobio.2015.10.003
Kim, M. et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum. Mol. Genet. 18, 3987–3996 (2009).
doi: 10.1093/hmg/ddp323
Agüero, P. et al. α-Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease. Alzheimers Res. Ther. 12, 139 (2020).
doi: 10.1186/s13195-020-00708-0
Shen, R. et al. Upregulation of RIN3 induces endosomal dysfunction in Alzheimer’s disease. Transl. Neurodegener. 9, 26 (2020).
doi: 10.1186/s40035-020-00206-1
Shen, R. & Wu, C. RIN3 binds to BIN1 and CD2AP to increase APP‐CTFS in early endosomes. Alzheimers Dement. 16, e047161 (2020).
doi: 10.1002/alz.047161
Foster, E. M., Dangla-Valls, A., Lovestone, S., Ribe, E. M. & Buckley, N. J. Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front. Neurosci. 13, 164 (2019).
doi: 10.3389/fnins.2019.00164
Hu, J., Igarashi, A., Kamata, M. & Nakagawa, H. Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 47863–47868 (2001).
doi: 10.1074/jbc.M104068200
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).
doi: 10.1038/s41586-021-04103-z
Bis, J. C. et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol. Psychiatry 25, 1859–1875 (2020).
doi: 10.1038/s41380-018-0112-7
McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269 (2011).
doi: 10.1016/j.jalz.2011.03.005
McKhann, G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944 (1984).
doi: 10.1212/WNL.34.7.939
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
doi: 10.1093/nar/gky955
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
doi: 10.1186/s13059-016-0974-4
Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).
doi: 10.1016/j.ajhg.2016.08.016
Liu, X., Li, C., Mou, C., Dong, Y. & Tu, Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 12, 103 (2020).
doi: 10.1186/s13073-020-00803-9
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).
doi: 10.1038/s41588-020-00776-w
Cole, P. & MacMahon, B. Attributable risk percent in case-control studies. Br. J. Prev. Soc. Med. 25, 242–244 (1971).
LaMorte, W.W. in Measures of Association (Boston University School of Public Health, 2018). https://sphweb.bumc.bu.edu/otlt/mph-modules/ep/ep713_association/EP713_Association8.html
Holstege, H. et al. Summary statistics for “Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s Disease”. Zenodo (2022) https://doi.org/10.5281/zenodo.6818051
Hulsman, M. & Holstege, H. Software (v.0.1.0) used in “Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s Disease”. Zenodo (2022) https://doi.org/10.5281/zenodo.6827458