Temperature mapping of non-photochemical quenching in Chlorella vulgaris.


Journal

Photosynthesis research
ISSN: 1573-5079
Titre abrégé: Photosynth Res
Pays: Netherlands
ID NLM: 100954728

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 13 01 2022
accepted: 25 10 2022
pubmed: 24 11 2022
medline: 31 1 2023
entrez: 23 11 2022
Statut: ppublish

Résumé

Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris. Using a recently developed Phenoplate technique to map quantum yield of Photosystem II (Y(II)) and non-photochemical quenching (NPQ) as a function of temperature, we show that the fast-relaxing NPQ follows an inverse normal distribution with respect to temperature and appears insensitive to previous temperature acclimation. The slow-relaxing or residual NPQ after 5 minutes of dark recovery follows a normal distribution similar to Y(II) but with a peak in the higher temperature range. Surprisingly, higher slow- and fast-relaxing NPQ values were observed in high-light relative to low-light acclimated cultures. Y(II) values peaked at the adaptation temperature regardless of temperature or light acclimation. Our novel findings show the complete temperature working spectrum of Y(II) and how excess energy quenching is managed across a wide range of temperatures in the model microalgal species C. vulgaris. Finally, we draw attention to the fact that the effect of the temperature component in PAM measurements has been wildly underestimated, and results from experiments at room temperature can be misleading.

Identifiants

pubmed: 36417105
doi: 10.1007/s11120-022-00981-0
pii: 10.1007/s11120-022-00981-0
pmc: PMC9879819
doi:

Substances chimiques

Chlorophyll A YF5Q9EJC8Y
Chlorophyll 1406-65-1
Photosystem II Protein Complex 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

191-202

Informations de copyright

© 2022. The Author(s).

Références

Photosynth Res. 2006 Jul;89(1):27-41
pubmed: 16763878
Plant Cell. 2013 Feb;25(2):545-57
pubmed: 23424243
Biochim Biophys Acta. 2016 Jun;1857(6):840-7
pubmed: 26869375
Plant Physiol. 2014 May;165(1):438-52
pubmed: 24623849
Biochim Biophys Acta. 1969;189(3):366-83
pubmed: 5370012
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2733-40
pubmed: 23818601
Plant Physiol. 1989 Jul;90(3):887-93
pubmed: 16666893
J Chem Phys. 2022 May 28;156(20):205102
pubmed: 35649869
Annu Rev Plant Biol. 2008;59:89-113
pubmed: 18444897
Sci Adv. 2020 Sep 2;6(36):
pubmed: 32917592
Photosynth Res. 2020 Dec;146(1-3):299-329
pubmed: 32780309
J Plant Physiol. 2015 Jan 1;172:92-103
pubmed: 25240793
Heliyon. 2019 Dec 24;5(12):e03050
pubmed: 32382667
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14162-7
pubmed: 9391170
Biochim Biophys Acta. 1993 Jul 5;1143(2):113-34
pubmed: 8318516
J Plant Physiol. 2005 Feb;162(2):181-94
pubmed: 15779828
Nature. 2009 Nov 26;462(7272):518-21
pubmed: 19940928
J Biol Chem. 2009 Nov 20;284(47):32770-81
pubmed: 19783661
Science. 2003 Mar 7;299(5612):1572-5
pubmed: 12624266
Photosynth Res. 2008 Oct-Dec;98(1-3):541-50
pubmed: 18649006
Plant J. 2013 Nov;76(4):568-79
pubmed: 24033721
Plant J. 2015 May;82(3):449-465
pubmed: 25758978
Photosynth Res. 2004 Feb;79(2):209
pubmed: 16228395
J Phycol. 2011 Dec;47(6):1413-24
pubmed: 27020365
Nature. 2000 Nov 30;408(6812):613-5
pubmed: 11117752
Biochim Biophys Acta. 2012 Jan;1817(1):167-81
pubmed: 21569757
Photosynth Res. 2006 Oct;90(1):29-43
pubmed: 17111236
Physiol Plant. 2020 Mar;168(3):617-629
pubmed: 31264713
Nature. 2000 Jan 27;403(6768):391-5
pubmed: 10667783
N Biotechnol. 2022 Jan 25;66:89-96
pubmed: 34715374
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730):
pubmed: 28808100
Plant Cell. 2018 Jan;30(1):196-208
pubmed: 29233855
Plant Physiol. 2001 Apr;125(4):1558-66
pubmed: 11299337
Nat Commun. 2014 Nov 13;5:5439
pubmed: 25451040
New Phytol. 2020 Oct;228(1):136-150
pubmed: 32442330
Cell. 2002 Aug 9;110(3):361-71
pubmed: 12176323
Plant Physiol. 2016 Apr;170(4):1903-16
pubmed: 26864015
Photosynth Res. 2001;67(1-2):139-45
pubmed: 16228323

Auteurs

Andrei Herdean (A)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia. andrei.herdean@uts.edu.au.

Christopher Hall (C)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

David J Hughes (DJ)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Unnikrishnan Kuzhiumparambil (U)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Bernardo Campos Diocaretz (BC)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Peter J Ralph (PJ)

Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH