RP2-Associated X-linked Retinopathy: Clinical Findings, Molecular Genetics, and Natural History.
Genetics
Genotyping
Inherited retinal diseases
Phenotyping
RP2
Retinitis Pigmentosa
Retinopathy
Journal
Ophthalmology
ISSN: 1549-4713
Titre abrégé: Ophthalmology
Pays: United States
ID NLM: 7802443
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
21
09
2022
revised:
10
11
2022
accepted:
10
11
2022
pubmed:
25
11
2022
medline:
25
3
2023
entrez:
24
11
2022
Statut:
ppublish
Résumé
To review and describe in detail the clinical course, functional and anatomic characteristics of RP2-associated retinal degeneration. Retrospective case series. Male participants with disease-causing variants in the RP2 gene. Review of all case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence [FAF] imaging, OCT), and electrophysiology assessment. Molecular genetic testing, clinical findings including best-corrected visual acuity (BCVA), qualitative and quantitative retinal imaging analysis, and electrophysiology parameters. Fifty-four molecularly confirmed patients were identified from 38 pedigrees. Twenty-eight disease-causing variants were identified, with 20 not previously clinically characterized. Fifty-three patients (98.1%) presented with retinitis pigmentosa. The mean age of onset (range ± standard deviation [SD]) was 9.6 years (1-57 ± 9.2 years). Forty-four patients (91.7%) had childhood-onset disease, with mean age of onset of 7.6 years. The most common first symptom was night blindness (68.8%). Mean BCVA (range ± SD) was 0.91 logarithm of the minimum angle of resolution (logMAR) (0-2.7 ± 0.80) and 0.94 logMAR (0-2.7 ± 0.78) for right and left eyes, respectively. On the basis of the World Health Organization visual impairment criteria, 18 patients (34%) had low vision. The majority (17/22) showed electroretinogram (ERG) evidence of a rod-cone dystrophy. Pattern ERG P50 was undetectable in all but 2 patients. A range of FAF findings was observed, from normal to advanced atrophy. There were no statistically significant differences between right and left eyes for ellipsoid zone width (EZW) and outer nuclear layer (ONL) thickness. The mean annual rate of EZW loss was 219 μm/year, and the mean annual decrease in ONL thickness was 4.93 μm/year. No patient with childhood-onset disease had an identifiable ellipsoid zone (EZ) after the age of 26 years at baseline or follow-up. Four patients had adulthood-onset disease and a less severe phenotype. This study details the clinical phenotype of RP2 retinopathy in a large cohort. The majority presented with early-onset severe retinal degeneration, with early macular involvement and complete loss of the foveal photoreceptor layer by the third decade of life. Full-field ERGs revealed rod-cone dystrophy in the vast majority, but with generalized (peripheral) cone system involvement of widely varying severity in the first 2 decades of life. Proprietary or commercial disclosure may be found after the references.
Identifiants
pubmed: 36423731
pii: S0161-6420(22)00916-2
doi: 10.1016/j.ophtha.2022.11.015
pmc: PMC10567581
pii:
doi:
Substances chimiques
GTP-Binding Proteins
EC 3.6.1.-
Membrane Proteins
0
RP2 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-422Subventions
Organisme : Wellcome Trust
ID : 099173/Z/12/Z
Pays : United Kingdom
Informations de copyright
Copyright © 2022 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Références
Am J Ophthalmol. 2017 Jun;178:18-26
pubmed: 28322733
Br J Ophthalmol. 2016 Aug;100(8):1022-7
pubmed: 26843488
Invest Ophthalmol Vis Sci. 2020 Apr 9;61(4):47
pubmed: 32347917
Ophthalmology. 2013 Jul;120(7):1454-64
pubmed: 23453514
Hum Genet. 1993 Oct;92(4):359-63
pubmed: 8225316
Am J Hum Genet. 2002 Jun;70(6):1545-54
pubmed: 11992260
Am J Ophthalmol. 2020 Mar;211:159-175
pubmed: 31812472
Invest Ophthalmol Vis Sci. 2019 Dec 2;60(15):5112-5123
pubmed: 31826238
Invest Ophthalmol Vis Sci. 2012 Dec 13;53(13):8232-7
pubmed: 23150612
Retina. 2018 Dec;38(12):2401-2414
pubmed: 29016458
Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2422-2436
pubmed: 29847648
Am J Hum Genet. 1997 Dec;61(6):1287-92
pubmed: 9399904
Am J Ophthalmol. 2021 May;225:95-107
pubmed: 33309813
Am J Hum Genet. 2003 Nov;73(5):1131-46
pubmed: 14564670
Hum Mol Genet. 2015 Feb 15;24(4):972-86
pubmed: 25292197
Doc Ophthalmol. 2022 Jun;144(3):165-177
pubmed: 35511377
Invest Ophthalmol Vis Sci. 2018 Sep 4;59(11):4558-4566
pubmed: 30208424
Hum Mutat. 2001 Aug;18(2):109-19
pubmed: 11462235
FASEB J. 2015 Mar;29(3):932-42
pubmed: 25422369
Prog Retin Eye Res. 2021 May;82:100898
pubmed: 32860923
Am J Ophthalmol. 2019 Feb;198:111-123
pubmed: 30312579
Graefes Arch Clin Exp Ophthalmol. 2009 Jan;247(1):137-42
pubmed: 18766368
Am J Ophthalmol. 2020 Feb;210:59-70
pubmed: 31704230
Br J Ophthalmol. 1999 Oct;83(10):1144-8
pubmed: 10502575
Lancet. 2006 Nov 18;368(9549):1795-809
pubmed: 17113430
Int Ophthalmol Clin. 2021 Oct 1;61(4):97-108
pubmed: 34584047
Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4457-4466
pubmed: 28863407
Ophthalmol Retina. 2021 Feb;5(2):195-214
pubmed: 32679203
Hum Mol Genet. 2017 Jul 1;26(13):2480-2492
pubmed: 28444310
Transl Vis Sci Technol. 2016 May 17;5(3):6
pubmed: 27226930
Nat Genet. 1998 Aug;19(4):327-32
pubmed: 9697692
Clin Exp Ophthalmol. 2021 Apr;49(3):270-288
pubmed: 33686777
Am J Ophthalmol. 2022 Feb;234:81-90
pubmed: 34303686
Am J Hum Genet. 1999 Apr;64(4):1210-5
pubmed: 10090907
Retina. 2019 Jun;39(6):1186-1199
pubmed: 29528978
Arch Ophthalmol. 2010 Jul;128(7):915-23
pubmed: 20625056
Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2712-21
pubmed: 10937588
Stem Cell Reports. 2020 Jul 14;15(1):67-79
pubmed: 32531192
Br J Ophthalmol. 2018 Aug;102(8):1028-1035
pubmed: 29141905
Ophthalmic Genet. 1999 Sep;20(3):161-72
pubmed: 10520237
Doc Ophthalmol. 2013 Feb;126(1):1-7
pubmed: 23073702
Ophthalmology. 2015 Sep;122(9):1899-906
pubmed: 26143542