Path sampling of recurrent neural networks by incorporating known physics.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 11 2022
Historique:
received: 29 07 2022
accepted: 07 11 2022
entrez: 26 11 2022
pubmed: 27 11 2022
medline: 30 11 2022
Statut: epublish

Résumé

Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections.

Identifiants

pubmed: 36433982
doi: 10.1038/s41467-022-34780-x
pii: 10.1038/s41467-022-34780-x
pmc: PMC9700810
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

7231

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM142719
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Annu Rev Phys Chem. 2020 Apr 20;71:213-238
pubmed: 32075515
J Chem Phys. 2018 Jan 7;148(1):010901
pubmed: 29306272
Chem Sci. 2020 Aug 26;11(35):9459-9467
pubmed: 34094212
J Chem Theory Comput. 2022 May 10;18(5):3231-3238
pubmed: 35384668
J Phys Chem Lett. 2021 Oct 21;12(41):10225-10234
pubmed: 34647736
Science. 2019 Aug 30;365(6456):885-890
pubmed: 31296650
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17641-17647
pubmed: 31416918
J Chem Phys. 2005 Jan 1;122(1):14503
pubmed: 15638670
Science. 2009 Mar 6;323(5919):1309-13
pubmed: 19197025
Annu Rev Phys Chem. 2010;61:191-217
pubmed: 20055676
J Phys Chem Lett. 2020 Apr 16;11(8):2998-3004
pubmed: 32239945
Nat Commun. 2019 Aug 8;10(1):3573
pubmed: 31395868
J Chem Phys. 2018 Aug 21;149(7):072301
pubmed: 30134694
J Chem Phys. 2013 Oct 28;139(16):164105
pubmed: 24182002
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12749-54
pubmed: 17646650
Phys Rev Lett. 2010 Apr 23;104(16):160601
pubmed: 20482036
Science. 2019 Sep 6;365(6457):
pubmed: 31488660
Nature. 2016 Jan 28;529(7587):484-9
pubmed: 26819042
J Chem Phys. 2018 Dec 7;149(21):214109
pubmed: 30525712
J Phys Chem B. 2020 Jan 9;124(1):69-78
pubmed: 31813215
IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):855-68
pubmed: 19299860
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
Phys Rev A. 1992 Apr 1;45(7):4879-4887
pubmed: 9907570
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2):
pubmed: 33376207
J Phys Chem B. 2018 May 31;122(21):5508-5514
pubmed: 29338243
J Chem Phys. 2017 Oct 21;147(15):152701
pubmed: 29055314
Phys Rev Lett. 2018 Jan 12;120(2):024102
pubmed: 29376715
Heliyon. 2018 Nov 23;4(11):e00938
pubmed: 30519653
Nat Commun. 2020 Oct 9;11(1):5115
pubmed: 33037228
Nat Commun. 2021 Feb 2;12(1):748
pubmed: 33531506
J Chem Phys. 2012 Feb 14;136(6):064108
pubmed: 22360170
Phys Rev Lett. 2019 Dec 13;123(24):245701
pubmed: 31922858
Phys Rev Lett. 1992 Feb 3;68(5):580-583
pubmed: 10045937

Auteurs

Sun-Ting Tsai (ST)

Department of Physics, University of Maryland, College Park, MD, 20742, USA.
Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.

Eric Fields (E)

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
Department of Computer Science, University of Maryland, College Park, MD, 20742, USA.

Yijia Xu (Y)

Department of Physics, University of Maryland, College Park, MD, 20742, USA.
Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, 20742, USA.

En-Jui Kuo (EJ)

Department of Physics, University of Maryland, College Park, MD, 20742, USA.
Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, 20742, USA.

Pratyush Tiwary (P)

Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA. ptiwary@umd.edu.
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA. ptiwary@umd.edu.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Artificial Intelligence COVID-19 SARS-CoV-2 Pandemics

Classifications MeSH