3T sodium MR imaging in Alzheimer's disease shows stage-dependent sodium increase influenced by age and local brain volume.

Aging Alzheimer’s Disease (AD) Magnetic resonance imaging (MRI) Metabolism Sodium MRI Sodium-23 ((23)Na)

Journal

NeuroImage. Clinical
ISSN: 2213-1582
Titre abrégé: Neuroimage Clin
Pays: Netherlands
ID NLM: 101597070

Informations de publication

Date de publication:
2022
Historique:
received: 01 03 2022
revised: 12 11 2022
accepted: 20 11 2022
pubmed: 2 12 2022
medline: 15 12 2022
entrez: 1 12 2022
Statut: ppublish

Résumé

Application of MRI in clinical routine mainly addresses structural alterations. However, pathological changes at a cellular level are expected to precede the occurrence of brain atrophy clusters and of clinical symptoms. In this context, We used a multimodal MRI protocol on 52 prodromal to mild AD patients and 34 cognitively healthy control subjects on a clinical 3T MR scanner. We examined the TSC, brain volume, and cortical thickness in association with clinical parameters. We further compared TSC with intra-individual normalized TSC for the reduction of inter-individual TSC variability resulting from physiological as well as experimental conditions. Normalized TSC maps were created by normalizing each voxel to the mean TSC inside the brain stem. We found increased normalized TSC in the AD cohort compared to elderly control subjects both on global as well as on a region-of-interest-based level. We further confirmed a significant association of local brain volume as well as age with TSC. TSC increase in the left temporal lobe was further associated with the cognitive state, evaluated via the Montreal cognitive assessment (MoCA) screening test. An increase of normalized TSC depending on disease stage reflected by the Clinical Dementia Rating (CDR) was found in our AD patients in temporal lobe regions. In comparison to classical brain volume and cortical thickness assessments, normalized TSC had a higher discriminative power between controls and prodromal AD patients in several regions of the temporal lobe. We confirm the feasibility of

Identifiants

pubmed: 36451374
pii: S2213-1582(22)00339-4
doi: 10.1016/j.nicl.2022.103274
pmc: PMC9723320
pii:
doi:

Substances chimiques

Sodium 9NEZ333N27

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

103274

Informations de copyright

Copyright © 2022. Published by Elsevier Inc.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Neuroimage Clin. 2018 Jul 17;20:286-296
pubmed: 30101060
Ann Nucl Med. 2002 Dec;16(8):515-25
pubmed: 12593416
Nat Rev Neurol. 2010 Feb;6(2):67-77
pubmed: 20139996
Sci Rep. 2020 Jun 9;10(1):9261
pubmed: 32518360
NMR Biomed. 2016 Feb;29(2):162-74
pubmed: 26451752
Neurosci Biobehav Rev. 2014 Feb;39:34-50
pubmed: 24374381
Neuroimage. 2012 Oct 15;63(1):517-24
pubmed: 22796981
Front Neuroinform. 2016 Jul 27;10:30
pubmed: 27512372
Neurology. 1993 Nov;43(11):2412-4
pubmed: 8232972
Brain. 2010 Mar;133(Pt 3):847-57
pubmed: 20110245
Neuroimage. 2014 Aug 1;96:44-53
pubmed: 24721332
Biochim Biophys Acta. 2010 Jan;1802(1):52-61
pubmed: 19682570
Neurotox Res. 2017 Oct;32(3):518-529
pubmed: 28639241
J Biomed Sci. 2020 Jan 6;27(1):18
pubmed: 31906949
Front Aging Neurosci. 2022 Feb 10;14:809767
pubmed: 35221996
Alzheimers Dement. 2018 Apr;14(4):535-562
pubmed: 29653606
PLoS One. 2020 Oct 5;15(10):e0240228
pubmed: 33017429
Brain. 2011 Jul;134(Pt 7):2036-43
pubmed: 21705422
Magn Reson Imaging. 2019 May;58:116-124
pubmed: 30695720
J Psychiatr Res. 1975 Nov;12(3):189-98
pubmed: 1202204
Hum Brain Mapp. 2003 Aug;19(4):224-47
pubmed: 12874777
Cerebrospinal Fluid Res. 2010 Jan 20;7:3
pubmed: 20205754
Neuroimage Clin. 2020;28:102427
pubmed: 33002860
Lancet Neurol. 2019 Jan;18(1):88-106
pubmed: 30497964
Alzheimers Dement. 2021 Nov;17(11):1843-1854
pubmed: 34855281
Neuroimage. 2014 Oct 1;99:166-79
pubmed: 24879923
Sci Transl Med. 2011 Apr 6;3(77):77sr1
pubmed: 21471435
Hum Brain Mapp. 2017 Aug;38(8):4212-4227
pubmed: 28561534
J Alzheimers Dis. 2015;44(3):851-7
pubmed: 25362038
Magn Reson Med. 2007 Jan;57(1):74-81
pubmed: 17191248
Cereb Cortex. 2018 Aug 1;28(8):2959-2975
pubmed: 29771288
AJNR Am J Neuroradiol. 2009 May;30(5):978-84
pubmed: 19213826
Lancet. 2021 Apr 24;397(10284):1577-1590
pubmed: 33667416
Neurology. 2007 Oct 16;69(16):1622-34
pubmed: 17938373
NMR Biomed. 2022 Jul;35(7):e4693
pubmed: 35044017
Neuroimage. 2018 Mar;168:250-268
pubmed: 27890804
Curr Top Dev Biol. 2005;70:77-101
pubmed: 16338338
In Vivo. 2021 Jan-Feb;35(1):429-435
pubmed: 33402493
Mol Cell. 2016 Mar 3;61(5):654-666
pubmed: 26942670
Physiol Genomics. 2020 Mar 1;52(3):133-142
pubmed: 31961762
Neurology. 2005 Aug 23;65(4):565-71
pubmed: 16116117
Alzheimers Dement (N Y). 2020 May 22;6(1):e12032
pubmed: 32490142
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Front Neuroinform. 2016 Jun 15;10:20
pubmed: 27378902
Front Neuroinform. 2014 Mar 14;8:24
pubmed: 24672471
Neurology. 2009 Aug 11;73(6):457-65
pubmed: 19667321
J Alzheimers Dis. 2021;82(2):661-672
pubmed: 34057084
Sci Rep. 2019 Mar 8;9(1):3998
pubmed: 30850617
Nat Rev Neurol. 2010 Feb;6(2):78-87
pubmed: 20139997
Magn Reson Med. 2011 Nov;66(5):1303-11
pubmed: 21469190
Biochim Biophys Acta. 2012 Nov;1822(11):1671-81
pubmed: 22820549
Arch Neurol. 2000 Mar;57(3):339-44
pubmed: 10714659
Biology (Basel). 2019 Jun 17;8(2):
pubmed: 31213034
J Neurosci Methods. 2008 Jul 30;172(2):277-82
pubmed: 18582948
Phys Med Biol. 2016 Nov 21;61(22):7975-7993
pubmed: 27779136
NMR Biomed. 2016 Feb;29(2):137-43
pubmed: 26058461
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
J Magn Reson Imaging. 2013 Sep;38(3):511-29
pubmed: 23722972
Magn Reson Med. 1999 Feb;41(2):351-9
pubmed: 10080284

Auteurs

Alexa Haeger (A)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Fawzi Boumezbeur (F)

NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France.

Michel Bottlaender (M)

NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France; Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.

Cécile Rabrait-Lerman (C)

NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France.

Julien Lagarde (J)

Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France; Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Université Paris-Cité, F-75006 Paris, France.

Shahram Mirzazade (S)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Janna Krahe (J)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Christian Hohenfeld (C)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Marie Sarazin (M)

Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France; Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Université Paris-Cité, F-75006 Paris, France.

Jörg B Schulz (JB)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Sandro Romanzetti (S)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.

Kathrin Reetz (K)

Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany. Electronic address: kreetz@ukaachen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH