Genome Editing and Protein Energy Malnutrition.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
entrez: 1 12 2022
pubmed: 2 12 2022
medline: 6 12 2022
Statut: ppublish

Résumé

Protein-energy malnutrition is a state of disordered catabolism resulting from metabolic derangements or starvation. It is associated with chronic disease, hypoglycemia, hypothermia, serious infections, and even an increased prevalence of morbidity and mortality in countries with poor socioeconomic or environmental factors. Adequate food administration is essential to satisfy the main caloric and nutritional demands of humans. The most significant factors seen in the development of protein-energy malnutrition in areas of high incidence, such as underdeveloped countries, are inadequate food and nutrient supplies. It has been well established that one of the strategies to alleviate undernourishment is the biofortification of staple crops. This is because vegetables and plants are significant sources of crucial nutrients for human growth and development. To enhance plant nutrition, recent tactics aim to formulated balanced and diverse diets with acceptable levels of vitamins and minerals that benefit human health. New advances in plant biotechnology and animal productivity could control key enzymes in several metabolic pathways, enriching important nutrients such as iron and vitamins and decreasing the content of disadvantageous compounds such as acrylamide-forming amino acids and phytic acids. Numerous biofortified crops such as rice, maize, and wheat have been created to resolve the problem of nutrition deficiencies. Some examples of these methodologies are genome editing engineered nucleases, transcriptional activator-like effector nucleases, zinc finger nucleases, and clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease which have been created and widely studied for their application, efficiency, and specificity.

Identifiants

pubmed: 36454470
doi: 10.1007/978-981-19-5642-3_15
doi:

Substances chimiques

CRISPR-Associated Protein 9 EC 3.1.-
Vitamins 0
Vitamin A 11103-57-4
Vitamin K 12001-79-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

215-232

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Références

De Onis M, Monteiro C, Akré J, Glugston G (1993) The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth. Bull World Health Organ 71(6):703
pubmed: 8313488 pmcid: 2393544
Batool R, Butt MS, Sultan MT, Saeed F, Naz R (2015) Protein–energy malnutrition: a risk factor for various ailments. Crit Rev Food Sci Nutr 55(2):242–253
pubmed: 24915388
Grover Z, Ee LC (2009) Protein energy malnutrition. Pediatr Clin 56(5):1055–1068
Adejumo AC, Akanbi O, Pani L (2019) Protein energy malnutrition is associated with worse outcomes in sepsis—a nationwide analysis. J Acad Nutr Diet 119(12):2069–2084
pubmed: 31296426
Akner G, Cederholm T (2001) Treatment of protein-energy malnutrition in chronic nonmalignant disorders. Am J Clin Nutr 74(1):6–24. https://doi.org/10.1093/ajcn/74.1.6
doi: 10.1093/ajcn/74.1.6 pubmed: 11451713
Crichton M, Craven D, Mackay H, Marx W, van der Schueren M, Marshall S (2019) A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: associations with geographical region and sex. Age Ageing 48(1):38–48. https://doi.org/10.1093/ageing/afy144
doi: 10.1093/ageing/afy144 pubmed: 30188972
Hengeveld LM, Wijnhoven HA, Olthof MR, Brouwer IA, Harris TB, Kritchevsky SB, Newman AB, Visser M (2018) Prospective associations of poor diet quality with long-term incidence of protein-energy malnutrition in community-dwelling older adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 107(2):155–164
pubmed: 29529142 pmcid: 6248415
Price DM (2008) Protein-energy malnutrition among the elderly: implications for nursing care. Holist Nurs Pract 22(6):355–360. https://doi.org/10.1097/01.HNP.0000339347.03629.41
doi: 10.1097/01.HNP.0000339347.03629.41 pubmed: 18981816
Norman K, Pichard C, Lochs H, Pirlich M (2008) Prognostic impact of disease-related malnutrition. Clin Nutr 27(1):5–15. https://doi.org/10.1016/j.clnu.2007.10.007
doi: 10.1016/j.clnu.2007.10.007 pubmed: 18061312
Leij-Halfwerk S, Verwijs MH, van Houdt S, Borkent JW, Guaitoli PR, Pelgrim T, Heymans MW, Power L, Visser M, Corish CA, van der Schueren MA, Manu EL (2019) Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults >/=65 years: a systematic review and meta-analysis. Maturitas 126:80–89. https://doi.org/10.1016/j.maturitas.2019.05.006
doi: 10.1016/j.maturitas.2019.05.006 pubmed: 31239123
Milner J, Goldberg I (1994) Functional foods. Chapman & Hall, London
Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170
pubmed: 18314378
Tontisirin K, Nantel G, Bhattacharjee L (2002) Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc Nutr Soc 61(2):243–250
pubmed: 12133206
Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009
doi: 10.1016/j.gfs.2017.01.009 pubmed: 28580239 pmcid: 5439484
Bouis HE, Hotz C, McClafferty B, Meenakshi J, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1):31–40
Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2(1):9–17
Yadav PK, Singh A, Agrawal S (2020) An overview on management of micronutrients deficiency in plants through biofortification: a solution of hidden hunger. In: Sustainable solutions for elemental deficiency and excess in crop plants. Springer, Cham, pp 183–208
Lonnerdal B (2003) Genetically modified plants for improved trace element nutrition. J Nutr 133(5):1490S–1493S
pubmed: 12730450
Gil A, Serra-Majem L, Calder PC, Uauy R (2012) Systematic reviews of the role of omega-3 fatty acids in the prevention and treatment of disease. Br J Nutr 107(S2):S1–S2
pubmed: 22591884
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106(36):15103–15110
pubmed: 19805247 pmcid: 2741212
Duggal P, Petri WA Jr (2018) Does malnutrition have a genetic component? Annu Rev Genomics Hum Genet 19:247–262
pubmed: 29874104
Ahmed T, Haque R, Shamsir Ahmed AM, Petri WA Jr, Cravioto A (2009) Use of metagenomics to understand the genetic basis of malnutrition. Nutr Rev 67(2):201–206
Kotut J, Wafula S, Ettyang G, Mbagaya G (2014) Protein-energy malnutrition among women of child bearing age in semiarid areas of Keiyo district, Kenya. Adv Life Sci Technol 24:80–92
Guleria P, Kumar V, Guleria S (2017) Genetic engineering: a possible strategy for protein-energy malnutrition regulation. Mol Biotechnol 59(11):499–517
pubmed: 28828714
Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, Archibald AL, Sang HM, Houston RD, Whitelaw CB, Watson M (2018) Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biol 19(1):1–11
Ahmar S, Saeed S, Khan MHU, Ullah Khan S, Mora-Poblete F, Kamran M, Faheem A, Maqsood A, Rauf M, Saleem S (2020) A revolution toward gene-editing technology and its application to crop improvement. Int J Mol Sci 21(16):5665
pubmed: 32784649 pmcid: 7461041
Haider M, Haider SQ (1984) Assessment of protein-calorie malnutrition. Clin Chem 30(8):1286–1299
pubmed: 6430595
Gilgen D, Mascie-Taylor C, Rosetta L (2001) Intestinal helminth infections, anaemia and labour productivity of female tea pluckers in Bangladesh. Trop Med Int Health 6(6):449–457
pubmed: 11422959
Chakraborty S, Gupta S, Chaturvedi B, Chakraborty S (2006) A study of protein energy malnutrition (PEM) in children (0 to 6 year) in a rural population of Jhansi district (UP). Indian J Community Med 31(4):291
Duggan C, Watkins JB, Koletzko B, Walker WA (2016) Nutrition in pediatrics: basic science, clinical applications, vol 1. PMPH USA, Ltd, Shelton
Badaloo AV, Forrester T, Reid M, Jahoor F (2006) Lipid kinetic differences between children with kwashiorkor and those with marasmus. Am J Clin Nutr 83(6):1283–1288
pubmed: 16762938
Ahmed T, Rahman S, Cravioto A (2009) Oedematous malnutrition. Indian J Med Res 130(5):651–655
pubmed: 20090122
Manary M, Brewster D (1997) Potassium supplementation in kwashiorkor. J Pediatr Gastroenterol Nutr 24(2):194–201
pubmed: 9106107
Campos-Bowers MH, Wittenmyer BF (2007) Biofortification in China: policy and practice. Health Res Policy Syst 5(1):1–7
Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9(1):641
pubmed: 23340847 pmcid: 3564264
Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52
pubmed: 25536441
White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593. https://doi.org/10.1016/j.tplants.2005.10.001
doi: 10.1016/j.tplants.2005.10.001 pubmed: 16271501
Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421. https://doi.org/10.1146/annurev-nutr-080508-141143
doi: 10.1146/annurev-nutr-080508-141143 pubmed: 19400753
Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12(3):373–380. https://doi.org/10.1016/j.pbi.2009.04.005
doi: 10.1016/j.pbi.2009.04.005 pubmed: 19473871
Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci 96(15):8774–8778
pubmed: 10411951 pmcid: 17592
Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22(2):479–488
pubmed: 6256082
Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12(6):224–228
pubmed: 8928227
Trevino AE, Zhang F (2014) Genome editing using Cas9 nickases. Methods Enzymol 546:161–174
pubmed: 25398340
Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131. https://doi.org/10.1016/j.tibtech.2014.11.008
doi: 10.1016/j.tibtech.2014.11.008 pubmed: 25496918
Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449. https://doi.org/10.1016/j.tplants.2015.11.006
doi: 10.1016/j.tplants.2015.11.006 pubmed: 26654659
Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25(22):4650–4657. https://doi.org/10.1093/nar/25.22.4650
doi: 10.1093/nar/25.22.4650 pubmed: 9358178 pmcid: 147090
Charbonnel C, Allain E, Gallego ME, White CI (2011) Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair 10(6):611–619. https://doi.org/10.1016/j.dnarep.2011.04.002
doi: 10.1016/j.dnarep.2011.04.002 pubmed: 21530420
Lloyd AH, Wang D, Timmis JN (2012) Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis. PLoS One 7(2):e32255. https://doi.org/10.1371/journal.pone.0032255
doi: 10.1371/journal.pone.0032255 pubmed: 22389691 pmcid: 3289645
Morgan WF, Corcoran J, Hartmann A, Kaplan MI, Limoli CL, Ponnaiya B (1998) DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutat Res 404(1-2):125–128
pubmed: 9729329
Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20(40):5572–5579. https://doi.org/10.1038/sj.onc.1204767
doi: 10.1038/sj.onc.1204767 pubmed: 11607810
Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93(10):5055–5060. https://doi.org/10.1073/pnas.93.10.5055
doi: 10.1073/pnas.93.10.5055 pubmed: 8643528 pmcid: 39405
Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14
pubmed: 15557293
Song F, Stieger K (2017) Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucl Acids 7:53–60. https://doi.org/10.1016/j.omtn.2017.02.006
doi: 10.1016/j.omtn.2017.02.006
Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, Willaert A (2018) CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech 11(10):35352. https://doi.org/10.1242/dmm.035352
doi: 10.1242/dmm.035352
Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305. https://doi.org/10.1126/science.287.5451.303
doi: 10.1126/science.287.5451.303 pubmed: 10634784
Gil-Humanes J, Piston F, Barro F, Rosell CM (2014) The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One 9(3):e91931. https://doi.org/10.1371/journal.pone.0091931
doi: 10.1371/journal.pone.0091931 pubmed: 24633046 pmcid: 3954839
Mugode L, Ha B, Kaunda A, Sikombe T, Phiri S, Mutale R, Davis C, Tanumihardjo S, De Moura FF (2014) Carotenoid retention of biofortified provitamin A maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. J Agric Food Chem 62(27):6317–6325. https://doi.org/10.1021/jf501233f
doi: 10.1021/jf501233f pubmed: 24930501
Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004
doi: 10.1016/j.tibtech.2013.04.004 pubmed: 23664777 pmcid: 3694601
Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400. https://doi.org/10.1093/pcp/pcu170
doi: 10.1093/pcp/pcu170 pubmed: 25416289
Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23(8):390–398. https://doi.org/10.1016/j.tcb.2013.04.003
doi: 10.1016/j.tcb.2013.04.003 pubmed: 23707478 pmcid: 3729746
Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JS, Zhu JK, Mahfouz MM (2012) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78(4-5):407–416. https://doi.org/10.1007/s11103-012-9875-4
doi: 10.1007/s11103-012-9875-4 pubmed: 22271303 pmcid: 3580834
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. https://doi.org/10.1534/genetics.110.120717
doi: 10.1534/genetics.110.120717 pubmed: 20660643 pmcid: 2942870
Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J-K (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci 108(6):2623–2628
pubmed: 21262818 pmcid: 3038751
Sedeek KEM, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114. https://doi.org/10.3389/fpls.2019.00114
doi: 10.3389/fpls.2019.00114 pubmed: 30809237 pmcid: 6379297
Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364
pubmed: 14739261
Hegde PS, Rajasekaran NS, Chandra T (2005) Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr Res 25(12):1109–1120
Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12(3):281–295
Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29
pubmed: 28167953 pmcid: 5253353
Mbithi-Mwikya S, Van Camp J, Yiru Y, Huyghebaert A (2000) Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT - Food Sci Technol 33(1):9–14
Kumar A, Sharma N, Panwar P, Gupta AK (2012) Use of SSR, RAPD markers and protein profiles based analysis to differentiate Eleusine coracana genotypes differing in their protein content. Mol Biol Rep 39(4):4949–4960
pubmed: 22167326
Kemper EL, Neto GC, Papes F, Moraes KCM, Leite A, Arruda P (1999) The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11(10):1981–1993
pubmed: 10521527 pmcid: 144114
Brennecke K, Neto AJS, Lugli J, Lea PJ, Azevedo RA (1996) Aspartate kinase in the maize mutants Ask1-LT19 and opaque-2. Phytochemistry 41(3):707–712
Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci 6:157
pubmed: 25852710 pmcid: 4371761
Babu BK, Agrawal P, Pandey D, Kumar A (2014) Comparative genomics and association mapping approaches for opaque2 modifier genes in finger millet accessions using genic, genomic and candidate gene-based simple sequence repeat markers. Mol Breed 34(3):1261–1279
Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128(1):1–14
pubmed: 25239219
Comai L, Schilling-Cordaro C, Mergia A, Houck CM (1983) A new technique for genetic engineering of Agrobacterium Ti plasmid. Plasmid 10(1):21–30
pubmed: 6312475
Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9(4):245–260
pubmed: 11131004
Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258(5080):287–292
pubmed: 17835129
Falco S, Guida T, Locke M, Mauvais J, Sanders C, Ward R, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Biotechnology 13(6):577–582
pubmed: 9634796
Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110(2):355–363
pubmed: 12226187 pmcid: 157728
Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8: 0 and 10: 0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9(2):167–172
pubmed: 8820604
Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJ (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci 94(16):8393–8398
pubmed: 9237987 pmcid: 22931
Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9(6):909–923
pubmed: 9212466 pmcid: 156967
Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282(5396):2098–2100
pubmed: 9851934
Sévenier R, Hall RD, van der Meer IM, Hakkert HJ, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16(9):843–846
pubmed: 9743117
Mazur B, Krebbers E, Tingey S (1999) Gene discovery and product development for grain quality traits. Science 285(5426):372–375
pubmed: 10411493
Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286
pubmed: 10096297
Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20(4):401–412
pubmed: 10607293
Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6(1):73–78
Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci 97(7):3724–3729
pubmed: 10716698 pmcid: 16307
Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Naik PS, Pande P, Chakrborti SK, Datta A (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci 107(41):17533–17538
pubmed: 20855595 pmcid: 2955143
Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305
pubmed: 10634784
Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18(6):666–669
pubmed: 10835607
Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24(3):413–420
pubmed: 11069713
Chapman KD, Austin-Brown S, Sparace SA, Kinney AJ, Ripp KG, Pirtle IL, Pirtle RM (2001) Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc 78(9):941–947
Li L, Liu S, Hu Y, Zhao W, Lin Z (2001) Increase of sulphur-containing amino acids in transgenic potato with 10 ku zein gene from maize. Chin Sci Bull 46(6):482–484
Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102(2-3):392–397
Zeh M, Casazza AP, Kreft O, Roessner U, Bieberich K, Willmitzer L, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127(3):792–802
pubmed: 11706163 pmcid: 129252
Fraser PD, Römer S, Kiano JW, Shipton CA, Mills PB, Drake R, Schuch W, Bramley PM (2001) Elevation of carotenoids in tomato by genetic manipulation. J Sci Food Agric 81(9):822–827
Dinkins RD, Reddy MS, Meurer CA, Yan B, Trick H, Thibaud-Nissen F, Finer JJ, Parrott WA, Collins GB (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol 37(6):742–747
Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20(6):613–618
pubmed: 12042867
Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18(12):3594–3605
pubmed: 17172359 pmcid: 1785402
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21(2):177–181
pubmed: 12524550
Suzuki YA, Kelleher SL, Yalda D, Wu L, Huang J, Huang N, Lönnerdal B (2003) Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J Pediatr Gastroenterol Nutr 36(2):190–199
pubmed: 12548053
Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21(9):1082–1087
pubmed: 12897790
Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164(3):371–378
Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci 100(6):3525–3530
pubmed: 12624189 pmcid: 152326
Anai T, Koga M, Tanaka H, Kinoshita T, Rahman S, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21(10):988–992
pubmed: 12835909
LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang C-Y, Tagmount A, deSouza M (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135(1):377–383
pubmed: 14671009 pmcid: 429391
Pilon-Smits EA, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119(1):123–132
pubmed: 9880353 pmcid: 32211
Rascón-Cruz Q, Sinagawa-Garcia S, Osuna-Castro J, Bohorova N, Paredes-López O (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108(2):335–342
pubmed: 14523523
Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16(10):2734–2748
pubmed: 15377762 pmcid: 520968
de la Garza RD, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci 101(38):13720–13725
pmcid: 518823
Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3(1):17–27
pubmed: 17168896
Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23(4):482–487
pubmed: 15793573
Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol Cell 19(1):16–22
Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56(409):81–89
pubmed: 15533882
Shin YM, Park HJ, Yim SD, Baek NI, Lee CH, An G, Woo YM (2006) Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm. Plant Biotechnol J 4(3):303–315
pubmed: 17147636
Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880
pubmed: 16307363
Tavva VS, Kim Y-H, Kagan IA, Dinkins RD, Kim K-H, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 26(1):61–70
pubmed: 16909228
Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G-F, Lambert W, Van Der Straeten D (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277–1279
pubmed: 17934451
Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2(4):e350
pubmed: 17406674 pmcid: 1831493
Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59(13):3551–3562
pubmed: 18723758 pmcid: 2561147
Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49(1):126–132
pubmed: 18037674
Upadhyaya CP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32(2):321–330
pubmed: 19821071
Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151(1):233–240
pubmed: 19587103 pmcid: 2736008
Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50(2):423–428
pubmed: 19122187
Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153(3):980–987
pubmed: 20488892 pmcid: 2899924
Kawakatsu T, Wang S, Wakasa Y, Takaiwa F (2010) Increased lysine content in rice grains by over-accumulation of BiP in the endosperm. Biosci Biotechnol Biochem 74(12):2529–2531
pubmed: 21150096
Zhang J, Martin JM, Beecher B, Lu C, Hannah LC, Wall ML, Altosaar I, Giroux MJ (2010) The ectopic expression of the wheat Puroindoline genes increase germ size and seed oil content in transgenic corn. Plant Mol Biol 74(4):353–365
pubmed: 20725765 pmcid: 4165627
Oakes J, Brackenridge D, Colletti R, Daley M, Hawkins DJ, Xiong H, Mai J, Screen SE, Val D, Lardizabal K (2011) Expression of fungal diacylglycerol acyltransferase2 genes to increase kernel oil in maize. Plant Physiol 155(3):1146–1157
pubmed: 21245192 pmcid: 3046575
Ahn M-J, Noh SA, Ha S-H, Back K, Lee SW, Bae JM (2012) Production of ketocarotenoids in transgenic carrot plants with an enhanced level of β-carotene. Plant Biotechnol Rep 6(2):133–140
Kim M-J, Kim JK, Kim HJ, Pak JH, Lee J-H, Kim D-H, Choi HK, Jung HW, Lee J-D, Chung Y-S (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7(10):e48287
pubmed: 23118971 pmcid: 3485231
Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2(1):1–7
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 10(4):390–397
pubmed: 22129455
Nguyen HC, Hoefgen R, Hesse H (2012) Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J Exp Bot 63(16):5991–6001
pubmed: 23048130
Schmidt MA, Parrott WA, Hildebrand DF, Berg RH, Cooksey A, Pendarvis K, He Y, McCarthy F, Herman EM (2015) Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol J 13(4):590–600
pubmed: 25400247
Betancor M, Sprague M, Usher S, Sayanova O, Campbell P, Napier JA, Tocher DR (2015) A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci Rep 5(1):1–10
Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A (2016) Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J 14(6):1394–1405
pubmed: 26798990
Hu T, Zhu S, Tan L, Qi W, He S, Wang G (2016) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77
Lönnerdal B, Iyer S (1995) Lactoferrin: molecular structure and biological function. Annu Rev Nutr 15(1):93–110
pubmed: 8527233
Shekhar S, Agrawal L, Mishra D, Buragohain AK, Unnikrishnan M, Mohan C, Chakraborty S, Chakraborty N (2016) Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato. Sci Rep 6(1):1–14
Zhu W, Yang L, Yang S, Gai J, Zhu Y (2016) Overexpression of rice phosphate transporter gene OsPT2 enhances nitrogen fixation and ammonium assimilation in transgenic soybean under phosphorus deficiency. J Plant Biol 59(2):172–181
Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision
Van der Steen H, Prall G, Plastow G (2005) Application of genomics to the pork industry. J Anim Sci 83(13):1–8
Kawall K, Cotter J, Then C (2020) Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci 32(1):1–24
Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, Cobos-Figueroa J, Ousinde O, Bermejo-Álvarez P (2019) Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9(1):1–8
Tan W, Proudfoot C, Lillico SG, Whitelaw CBA (2016) Gene targeting, genome editing: from Dolly to editors. Transgenic Res 25(3):273–287
pubmed: 26847670 pmcid: 4882362
Yum S-Y, Youn K-Y, Choi W-J, Jang G (2018) Development of genome engineering technologies in cattle: from random to specific. J Anim Sci Biotechnol 9(1):1–9
Bruce A (2017) Genome edited animals: learning from GM crops? Transgenic Res 26(3):385–398
pubmed: 28432545 pmcid: 5422448
West J, Gill WW (2016) Genome editing in large animals. J Equine Vet 41:1–6
Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc R Soc B Biol Sci 281(1780):20133368
Consortium ICGS (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716
Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens H-J (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424):393–398
pubmed: 23151582 pmcid: 3566564
Elsik CG, Tellam RL, Worley KC (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522–528
pubmed: 19390049 pmcid: 2943200
Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P (2013) Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 14(1):1–13
Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4(8):e6524
pubmed: 19654876 pmcid: 2716536
Watson M (2014) Illuminating the future of DNA sequencing. Genome Biol 15(2):1–2
Loman NJ, Watson M (2015) Successful test launch for nanopore sequencing. Nat Methods 12(4):303–304
pubmed: 25825834
Pursel V, Hammer R, Bolt D, Palmiter R, Brinster R (2018) Expression of growth hormone transgenes in swine. J Reprod Fertil Suppl 10:235–245
Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, Brinster RL, Hammer RE (1989) Genetic engineering of livestock. Science 244(4910):1281–1288
pubmed: 2499927
Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodbourne Pathog Dis 3(4):384–392
Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, Collette NM, Moyer AL, Conrad-Brink JS, Rowe JD (2003) Increased efficiency of transgenic livestock production. Transgenic Res 12(4):485–496
pubmed: 12885169
Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23(4):445–451
pubmed: 15806099
Waltz E (2017) First genetically engineered salmon sold in Canada. Nat News 548(7666):148
Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB (2016) DND knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6(1):1–8
Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CBA (2015) Genome edited sheep and cattle. Transgenic Res 24(1):147–153
pubmed: 25204701
Crispo M, Mulet A, Tesson L, Barrera N, Cuadro F, dos Santos-Neto P, Nguyen T, Crénéguy A, Brusselle L, Anegón I (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10(8):e0136690
pubmed: 26305800 pmcid: 4549068
Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L (2018) CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 49(1):43–51
pubmed: 29446146
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7(1):1–12
Kang J-D, Kim S, Zhu H-Y, Jin L, Guo Q, Li X-C, Zhang Y-C, Xing X-X, Xuan M-F, Zhang G-L (2017) Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC Adv 7(21):12541–12549
Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, Guo N, Ouyang H, Jiao H, Pang D (2017) CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26(6):799–805
pubmed: 28993973
Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, Xiao G, Li B, Xie S, Gao T (2017) Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 8(21):34911
pubmed: 28432282 pmcid: 5471021
Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G (2016) Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6(1):1–12
Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H (2016) Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev 83(1):61–70
pubmed: 26488621
Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5(1):1–11
Cyranoski D (2015) Super-muscly pigs created by small genetic tweak. Nat News 523(7558):13
Kang Q, Hu Y, Zou Y, Hu W, Chang F (2014) Improving pig genetic resistance and muscle production through molecular biology. In: Proceedings of the 10th world congress of genetics applied to livestock production, pp 17–22
Cattle GI welfare implications of dehorning and disbudding cattle
Sonstegard T, Carlson D, Lancto C, Fahrenkrug S (2016) Precision animal breeding as a sustainable, non-GMO solution for improving animal production and welfare. In: Biennial Conf Aust Soc Anim Prod, pp 316–317
Große-Brinkhaus C, Storck LC, Frieden L, Neuhoff C, Schellander K, Looft C, Tholen E (2015) Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects. BMC Genet 16(1):1–16
Rowe SJ, Karacaören B, De Koning D-J, Lukic B, Hastings-Clark N, Velander I, Haley CS, Archibald AL (2014) Analysis of the genetics of boar taint reveals both single SNPs and regional effects. BMC Genomics 15(1):1–11
Medugorac I, Seichter D, Graf A, Russ I, Blum H, Göpel KH, Rothammer S, Förster M, Krebs S (2012) Bovine polledness–an autosomal dominant trait with allelic heterogeneity. PLoS One 7(6):e39477
pubmed: 22737241 pmcid: 3380827
Rothammer S, Capitan A, Mullaart E, Seichter D, Russ I, Medugorac I (2014) The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet Sel Evol 46(1):1–5
Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–481
pubmed: 27153274
Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24(4):435–436
pubmed: 16565727 pmcid: 2976610
Zhang P, Zhang Y, Dou H, Yin J, Chen Y, Pang X, Vajta G, Bolund L, Du Y, Ma RZ (2012) Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell Reprogram 14(3):258–266
pubmed: 22686479 pmcid: 3369703
Liu X, Pang D, Yuan T, Li Z, Li Z, Zhang M, Ren W, Ouyang H, Tang X (2016) N-3 polyunsaturated fatty acids attenuates triglyceride and inflammatory factors level in h fat-1 transgenic pigs. Lipids Health Dis 15(1):1–7
Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X (2018) Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3 8(5):1747–1754
pubmed: 29563188 pmcid: 5940165

Auteurs

Sergio Moreno-Nombela (S)

Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Granada, Spain.

Javier Romero-Parra (J)

Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.

Francisco Javier Ruiz-Ojeda (FJ)

Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Granada, Spain.
Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain.
RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, Germany.

Patricio Solis-Urra (P)

Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Aiman Tariq Baig (AT)

Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.

Julio Plaza-Diaz (J)

Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain. jrplaza@ugr.es.
Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain. jrplaza@ugr.es.
Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada. jrplaza@ugr.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH