Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 12 2022
03 12 2022
Historique:
received:
21
07
2022
accepted:
29
11
2022
entrez:
3
12
2022
pubmed:
4
12
2022
medline:
7
12
2022
Statut:
epublish
Résumé
After spinal cord injury (SCI), reorganization processes and changes in brain connectivity occur. Besides the sensorimotor cortex, the subcortical areas are strongly involved in motion and executive control. This exploratory study focusses on the cerebellum and vermis. Resting-state functional magnetic resonance imaging (fMRI) was performed. Between-group differences were computed using analysis of covariance and post-hoc tests for the seed-based connectivity measure with vermis and cerebellum as regions of interest. Twenty participants with complete SCI (five subacute SCI, 15 with chronic SCI) and 14 healthy controls (HC) were included. Functional connectivity (FC) was lower in all subjects with SCI compared with HC in vermis IX, right superior frontal gyrus (p
Identifiants
pubmed: 36463248
doi: 10.1038/s41598-022-25345-5
pii: 10.1038/s41598-022-25345-5
pmc: PMC9719483
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20874Informations de copyright
© 2022. The Author(s).
Références
Athanasiou, A. et al. A systematic review of investigations into functional brain connectivity following spinal cord injury. Front. Hum. Neurosci. 11, 1–9 (2017).
doi: 10.3389/fnhum.2017.00517
Pearson, K. G. Neural adaptation in the generation of rhythmic behavior. Annu. Rev. Physiol. 62, 723–753 (2000).
doi: 10.1146/annurev.physiol.62.1.723
pubmed: 10845109
Dietz, V. Neuronal plasticity after a human spinal cord injury: Positive and negative effects. Exp. Neurol. 235, 110–115 (2012).
doi: 10.1016/j.expneurol.2011.04.007
pubmed: 21530507
Zhu, L. et al. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. PLoS One 10, 1–11 (2015).
Wu, R., Yang, P.-F. & Chen, L. M. Correlated disruption of resting-state fMRI, LFP, and spike connectivity between area 3b and S2 following spinal cord injury in monkeys. J. Neurosci. 37, 11192–11203 (2017).
doi: 10.1523/JNEUROSCI.2318-17.2017
pubmed: 29038239
pmcid: 5688527
Zheng, W. et al. Functional reorganizations outside the sensorimotor regions following complete thoracolumbar spinal cord injury. J. Magn. Reson. Imaging 54, 1551–1559 (2021).
doi: 10.1002/jmri.27764
pubmed: 34060693
Kim, A. R. et al. Impact of fractional amplitude of low-frequency fluctuations in motor- and sensory-related brain networks on spinal cord injury severity. NMR Biomed. https://doi.org/10.1002/nbm.4612 (2021).
doi: 10.1002/nbm.4612
pubmed: 34939236
pmcid: 8795858
Alizadeh, M. et al. Graph theoretical structural connectome analysis of the brain in patients with chronic spinal cord injury: Preliminary investigation. Spinal Cord Ser. Cases 7, 60 (2021).
doi: 10.1038/s41394-021-00424-3
pubmed: 34274953
pmcid: 8286254
Hawasli, A. H. et al. Spinal cord injury disrupts resting-state networks in the human brain. J. Neurotrauma 35, 864–873 (2018).
doi: 10.1089/neu.2017.5212
pubmed: 29179629
pmcid: 5863102
Hou, J. M. et al. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 277, 446–454 (2014).
doi: 10.1016/j.neuroscience.2014.07.045
pubmed: 25086312
Oni-Orisan, A. et al. Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: A prospective resting-state fMRI study. PLoS One 11, 1–13 (2016).
Manni, E. & Petrosini, L. A century of cerebellar somatotopy: A debated representation. Nat. Rev. Neurosci. 5, 241–249 (2004).
doi: 10.1038/nrn1347
pubmed: 14976523
Rijntjes, M., Buechel, C., Kiebel, S. & Weiller, C. Multiple somatotopic representations in the human cerebellum. NeuroReport 10, 3653–3658 (1999).
doi: 10.1097/00001756-199911260-00035
pubmed: 10619661
D’Angelo, E. Physiology of the cerebellum. In Handbook of Clinical Neurology vol. 154 85–108 (Elsevier, 2018).
Schmahmann, J. D. The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019).
doi: 10.1016/j.neulet.2018.07.005
pubmed: 29997061
Coffman, K. A., Dum, R. P. & Strick, P. L. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 108, 16068–16073 (2011).
doi: 10.1073/pnas.1107904108
pubmed: 21911381
pmcid: 3179064
Visavadiya, N. P. & Springer, J. E. Altered cerebellar circuitry following thoracic spinal cord injury in adult rats. Neural Plast. 2016, 1–5 (2016).
doi: 10.1155/2016/8181393
Kaushal, M. et al. Evaluation of whole-brain resting-state functional connectivity in spinal cord injury: A large-scale network analysis using network-based statistic. J. Neurotrauma 34, 1278–1282 (2017).
doi: 10.1089/neu.2016.4649
pubmed: 27937140
Matsubayashi, K. et al. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci. Rep. 8, 14406 (2018).
doi: 10.1038/s41598-018-32766-8
pubmed: 30258091
pmcid: 6158265
Angelaki, D. E., Yakusheva, T. A., Green, A. M., Dickman, J. D. & Blazquez, P. M. Computation of egomotion in the macaque cerebellar vermis. Cerebellum 9, 174–182 (2010).
doi: 10.1007/s12311-009-0147-z
pubmed: 20012388
pmcid: 3640361
Bao, B. et al. Changes in temporal and spatial patterns of intrinsic brain activity and functional connectivity in upper-limb amputees: An fMRI study. Neural Plast. 2021, 1–13 (2021).
Rao, J.-S. et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: A resting-state fMRI study. Magn. Reson. Imaging 32, 482–486 (2014).
doi: 10.1016/j.mri.2014.02.001
pubmed: 24629510
Endo, T., Spenger, C., Tominaga, T., Brene, S. & Olson, L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 130, 2951–2961 (2007).
doi: 10.1093/brain/awm237
pubmed: 17913768
Min, Y.-S. et al. Change of brain functional connectivity in patients with spinal cord injury: Graph theory based approach. Ann. Rehabil. Med. 39, 374 (2015).
doi: 10.5535/arm.2015.39.3.374
pubmed: 26161343
pmcid: 4496508
Bruehlmeier, M. et al. How does the human brain deal with a spinal cord injury?. Eur. J. Neurosci. 10, 3918–3922 (1998).
doi: 10.1046/j.1460-9568.1998.00454.x
pubmed: 9875370
Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).
doi: 10.1038/sj.sc.3102007
pubmed: 17179973
Barbiellini Amidei, C., Salmaso, L., Bellio, S. & Saia, M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord https://doi.org/10.1038/s41393-022-00795-w (2022).
doi: 10.1038/s41393-022-00795-w
pubmed: 35396455
pmcid: 8990493
Vandenbroucke, J. P., Poole, C., Schlesselman, J. J. & Egger, M. Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. PLoS Med. 4, 27 (2007).
doi: 10.1371/journal.pmed.0040297
Kirshblum, S. C. et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 34, 547–554 (2011).
doi: 10.1179/107902611X13186000420242
pubmed: 22330109
pmcid: 3232637
Snaith, R. P. The hospital anxiety and depression scale. Health Qual. Life Outcomes 1–4 (2003).
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiat. 72, 603 (2015).
doi: 10.1001/jamapsychiatry.2015.0071
Huynh, V. et al. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Hum. Brain Mapp. 42, 3733–3749 (2021).
doi: 10.1002/hbm.25401
pubmed: 34132441
pmcid: 8288099
Bryce, T. N. et al. International spinal cord injury pain (ISCIP) classification: Part 2. Initial validation using vignettes. Spinal Cord 50, 404–412 (2012).
doi: 10.1038/sc.2012.2
pubmed: 22310319
Whitfield-Gabrieli, S. & Nieto-Castanon, A. CONN: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).
doi: 10.1089/brain.2012.0073
pubmed: 22642651
Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).
doi: 10.1016/j.neuroimage.2005.02.018
pubmed: 15955494
Fan, L. et al. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).
doi: 10.1093/cercor/bhw157
pubmed: 27230218
pmcid: 4961028
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2022).
Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
doi: 10.1038/nrn2575
pubmed: 19190637
Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, 175–183 (2007).
doi: 10.1371/journal.pcbi.0030017
Zang, Y.-F. et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91 (2007).
doi: 10.1016/j.braindev.2006.07.002
pubmed: 16919409