Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 12 2022
Historique:
received: 21 07 2022
accepted: 29 11 2022
entrez: 3 12 2022
pubmed: 4 12 2022
medline: 7 12 2022
Statut: epublish

Résumé

After spinal cord injury (SCI), reorganization processes and changes in brain connectivity occur. Besides the sensorimotor cortex, the subcortical areas are strongly involved in motion and executive control. This exploratory study focusses on the cerebellum and vermis. Resting-state functional magnetic resonance imaging (fMRI) was performed. Between-group differences were computed using analysis of covariance and post-hoc tests for the seed-based connectivity measure with vermis and cerebellum as regions of interest. Twenty participants with complete SCI (five subacute SCI, 15 with chronic SCI) and 14 healthy controls (HC) were included. Functional connectivity (FC) was lower in all subjects with SCI compared with HC in vermis IX, right superior frontal gyrus (p

Identifiants

pubmed: 36463248
doi: 10.1038/s41598-022-25345-5
pii: 10.1038/s41598-022-25345-5
pmc: PMC9719483
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

20874

Informations de copyright

© 2022. The Author(s).

Références

Athanasiou, A. et al. A systematic review of investigations into functional brain connectivity following spinal cord injury. Front. Hum. Neurosci. 11, 1–9 (2017).
doi: 10.3389/fnhum.2017.00517
Pearson, K. G. Neural adaptation in the generation of rhythmic behavior. Annu. Rev. Physiol. 62, 723–753 (2000).
doi: 10.1146/annurev.physiol.62.1.723 pubmed: 10845109
Dietz, V. Neuronal plasticity after a human spinal cord injury: Positive and negative effects. Exp. Neurol. 235, 110–115 (2012).
doi: 10.1016/j.expneurol.2011.04.007 pubmed: 21530507
Zhu, L. et al. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. PLoS One 10, 1–11 (2015).
Wu, R., Yang, P.-F. & Chen, L. M. Correlated disruption of resting-state fMRI, LFP, and spike connectivity between area 3b and S2 following spinal cord injury in monkeys. J. Neurosci. 37, 11192–11203 (2017).
doi: 10.1523/JNEUROSCI.2318-17.2017 pubmed: 29038239 pmcid: 5688527
Zheng, W. et al. Functional reorganizations outside the sensorimotor regions following complete thoracolumbar spinal cord injury. J. Magn. Reson. Imaging 54, 1551–1559 (2021).
doi: 10.1002/jmri.27764 pubmed: 34060693
Kim, A. R. et al. Impact of fractional amplitude of low-frequency fluctuations in motor- and sensory-related brain networks on spinal cord injury severity. NMR Biomed. https://doi.org/10.1002/nbm.4612 (2021).
doi: 10.1002/nbm.4612 pubmed: 34939236 pmcid: 8795858
Alizadeh, M. et al. Graph theoretical structural connectome analysis of the brain in patients with chronic spinal cord injury: Preliminary investigation. Spinal Cord Ser. Cases 7, 60 (2021).
doi: 10.1038/s41394-021-00424-3 pubmed: 34274953 pmcid: 8286254
Hawasli, A. H. et al. Spinal cord injury disrupts resting-state networks in the human brain. J. Neurotrauma 35, 864–873 (2018).
doi: 10.1089/neu.2017.5212 pubmed: 29179629 pmcid: 5863102
Hou, J. M. et al. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 277, 446–454 (2014).
doi: 10.1016/j.neuroscience.2014.07.045 pubmed: 25086312
Oni-Orisan, A. et al. Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: A prospective resting-state fMRI study. PLoS One 11, 1–13 (2016).
Manni, E. & Petrosini, L. A century of cerebellar somatotopy: A debated representation. Nat. Rev. Neurosci. 5, 241–249 (2004).
doi: 10.1038/nrn1347 pubmed: 14976523
Rijntjes, M., Buechel, C., Kiebel, S. & Weiller, C. Multiple somatotopic representations in the human cerebellum. NeuroReport 10, 3653–3658 (1999).
doi: 10.1097/00001756-199911260-00035 pubmed: 10619661
D’Angelo, E. Physiology of the cerebellum. In Handbook of Clinical Neurology vol. 154 85–108 (Elsevier, 2018).
Schmahmann, J. D. The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019).
doi: 10.1016/j.neulet.2018.07.005 pubmed: 29997061
Coffman, K. A., Dum, R. P. & Strick, P. L. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 108, 16068–16073 (2011).
doi: 10.1073/pnas.1107904108 pubmed: 21911381 pmcid: 3179064
Visavadiya, N. P. & Springer, J. E. Altered cerebellar circuitry following thoracic spinal cord injury in adult rats. Neural Plast. 2016, 1–5 (2016).
doi: 10.1155/2016/8181393
Kaushal, M. et al. Evaluation of whole-brain resting-state functional connectivity in spinal cord injury: A large-scale network analysis using network-based statistic. J. Neurotrauma 34, 1278–1282 (2017).
doi: 10.1089/neu.2016.4649 pubmed: 27937140
Matsubayashi, K. et al. Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci. Rep. 8, 14406 (2018).
doi: 10.1038/s41598-018-32766-8 pubmed: 30258091 pmcid: 6158265
Angelaki, D. E., Yakusheva, T. A., Green, A. M., Dickman, J. D. & Blazquez, P. M. Computation of egomotion in the macaque cerebellar vermis. Cerebellum 9, 174–182 (2010).
doi: 10.1007/s12311-009-0147-z pubmed: 20012388 pmcid: 3640361
Bao, B. et al. Changes in temporal and spatial patterns of intrinsic brain activity and functional connectivity in upper-limb amputees: An fMRI study. Neural Plast. 2021, 1–13 (2021).
Rao, J.-S. et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: A resting-state fMRI study. Magn. Reson. Imaging 32, 482–486 (2014).
doi: 10.1016/j.mri.2014.02.001 pubmed: 24629510
Endo, T., Spenger, C., Tominaga, T., Brene, S. & Olson, L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 130, 2951–2961 (2007).
doi: 10.1093/brain/awm237 pubmed: 17913768
Min, Y.-S. et al. Change of brain functional connectivity in patients with spinal cord injury: Graph theory based approach. Ann. Rehabil. Med. 39, 374 (2015).
doi: 10.5535/arm.2015.39.3.374 pubmed: 26161343 pmcid: 4496508
Bruehlmeier, M. et al. How does the human brain deal with a spinal cord injury?. Eur. J. Neurosci. 10, 3918–3922 (1998).
doi: 10.1046/j.1460-9568.1998.00454.x pubmed: 9875370
Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).
doi: 10.1038/sj.sc.3102007 pubmed: 17179973
Barbiellini Amidei, C., Salmaso, L., Bellio, S. & Saia, M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord https://doi.org/10.1038/s41393-022-00795-w (2022).
doi: 10.1038/s41393-022-00795-w pubmed: 35396455 pmcid: 8990493
Vandenbroucke, J. P., Poole, C., Schlesselman, J. J. & Egger, M. Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. PLoS Med. 4, 27 (2007).
doi: 10.1371/journal.pmed.0040297
Kirshblum, S. C. et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 34, 547–554 (2011).
doi: 10.1179/107902611X13186000420242 pubmed: 22330109 pmcid: 3232637
Snaith, R. P. The hospital anxiety and depression scale. Health Qual. Life Outcomes 1–4 (2003).
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiat. 72, 603 (2015).
doi: 10.1001/jamapsychiatry.2015.0071
Huynh, V. et al. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Hum. Brain Mapp. 42, 3733–3749 (2021).
doi: 10.1002/hbm.25401 pubmed: 34132441 pmcid: 8288099
Bryce, T. N. et al. International spinal cord injury pain (ISCIP) classification: Part 2. Initial validation using vignettes. Spinal Cord 50, 404–412 (2012).
doi: 10.1038/sc.2012.2 pubmed: 22310319
Whitfield-Gabrieli, S. & Nieto-Castanon, A. CONN: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).
doi: 10.1089/brain.2012.0073 pubmed: 22642651
Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).
doi: 10.1016/j.neuroimage.2005.02.018 pubmed: 15955494
Fan, L. et al. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).
doi: 10.1093/cercor/bhw157 pubmed: 27230218 pmcid: 4961028
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2022).
Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
doi: 10.1038/nrn2575 pubmed: 19190637
Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, 175–183 (2007).
doi: 10.1371/journal.pcbi.0030017
Zang, Y.-F. et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–91 (2007).
doi: 10.1016/j.braindev.2006.07.002 pubmed: 16919409

Auteurs

Vanessa Vallesi (V)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Johannes K Richter (JK)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.
Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital of Bern, Inselspital, University of Bern, Bern, Switzerland.

Nadine Hunkeler (N)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Mihael Abramovic (M)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Claus Hashagen (C)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Ernst Christiaanse (E)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.
Division Imaging and Oncology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands.

Ganesh Shetty (G)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Rajeev K Verma (RK)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Markus Berger (M)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Angela Frotzler (A)

Digital Trial Intervention Platform, ETH Zurich, Zurich, Switzerland.
Clinical Trial Unit, Swiss Paraplegic Centre, Nottwil, Switzerland.

Heidrun Eisenlohr (H)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland.

Inge Eriks-Hoogland (I)

Outpatient Care Unit, Swiss Paraplegic Centre, Nottwil, Switzerland.

Anke Scheel-Sailer (A)

Department of Paraplegia, Rehabilitation and Quality Management, Swiss Paraplegic Centre, Nottwil, Switzerland.

Lars Michels (L)

Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.
Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.

Patrik O Wyss (PO)

Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech-Strasse 1, 6207, Nottwil, Switzerland. wyssp.sci@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH