Handling method affects measures of anxiety, but not chronic stress in mice.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 12 2022
03 12 2022
Historique:
received:
03
09
2022
accepted:
24
11
2022
entrez:
3
12
2022
pubmed:
4
12
2022
medline:
7
12
2022
Statut:
epublish
Résumé
Studies in mice have shown that less aversive handling methods (e.g. tunnel or cup handling) can reduce behavioural measures of anxiety in comparison to picking mice up by their tail. Despite such evidence, tail handling continues to be used routinely. Besides resistance to change accustomed procedures, this may also be due to the fact that current evidence in support of less aversive handling is mostly restricted to effects of extensive daily handling, which may not apply to routine husbandry practices. The aim of our study was to assess whether, and to what extent, different handling methods during routine husbandry induce differences in behavioural and physiological measures of stress in laboratory mice. To put the effects of handling method in perspective with chronic stress, we compared handling methods to a validated paradigm of unpredictable chronic mild stress (UCMS). We housed mice of two strains (Balb/c and C57BL/6) and both sexes either under standard laboratory conditions (CTRL) or under UCMS. Half of the animals from each housing condition were tail handled and half were tunnel handled twice per week, once during a cage change and once for a routine health check. We found strain dependent effects of handling method on behavioural measures of anxiety: tunnel handled Balb/c mice interacted with the handler more than tail handled conspecifics, and tunnel handled CTRL mice showed increased open arm exploration in the elevated plus-maze. Mice undergoing UCMS showed increased plasma corticosterone levels and reduced sucrose preference. However, we found no effect of handling method on these stress-associated measures. Our results therefore indicate that routine tail handling can affect behavioural measures of anxiety, but may not be a significant source of chronic husbandry stress. Our results also highlight strain dependent responses to handling methods.
Identifiants
pubmed: 36463282
doi: 10.1038/s41598-022-25090-9
pii: 10.1038/s41598-022-25090-9
pmc: PMC9719500
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20938Informations de copyright
© 2022. The Author(s).
Références
Núñez, J. F., Ferré, P., Escorihuela, R. M., Tobeña, A. & Fernández-Teruel, A. Effects of postnatal handling of rats on emotional, HPA-axis, and prolactin reactivity to novelty and conflict. Physiol. Behav. 60, 1355–1359 (1996).
pubmed: 8916194
doi: 10.1016/S0031-9384(96)00225-9
Balcombe, J., Barnard, N. & Sandusky, C. Laboratory routines cause animal stress. J. Am. Assoc. Lab. Anim. Sci. 43, 42–51 (2004).
Meijer, M. K., Sommer, R., Spruijt, B. M., van Zutphen, L. F. M. & Baumans, V. Influence of environmental enrichment and handling on the acute stress response in individually housed mice. Lab. Anim. 41, 161–173 (2007).
pubmed: 17430616
doi: 10.1258/002367707780378168
Drude, S. et al. Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice. Lab Anim. (NY) 40, 119–128 (2011).
pubmed: 21427691
doi: 10.1038/laban0411-119
Cait, J., Cait, A., Scott, R. W., Winder, C. B. & Mason, G. J. Conventional laboratory housing increases morbidity and mortality in research rodents: results of a meta-analysis. BMC Biol. 2022(20), 1–22 (2022).
Rasmussen, S., Miller, M. M., Filipski, S. B. & Tolwani, R. J. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J. Am. Assoc. Lab. Anim. Sci. 50, 479 (2011).
pubmed: 21838975
pmcid: 3148651
Anisman, H., Zaharia, M. D., Meaney, M. J. & Merali, Z. Do early-life events permanently alter behavioral and hormonal responses to stressors?. Int. J. Devl Neurosci. 16, 149–164 (1998).
doi: 10.1016/S0736-5748(98)00025-2
Pritchard, L. M., Van Kempen, T. A. & Zimmerberg, B. Behavioral effects of repeated handling differ in rats reared in social isolation and environmental enrichment. Neurosci. Lett. 536, 47–51 (2013).
pubmed: 23313592
doi: 10.1016/j.neulet.2012.12.048
Holson, R., Scallet, A., Ali, S. & Turner, B. ‘Isolation stress’ revisited: Isolation-rearing effects depend on animal care methods. Physiol. Behav. 49, 1107–1118 (1991).
pubmed: 1896492
doi: 10.1016/0031-9384(91)90338-O
Dobrakovová, M. et al. Specificity of the effect of repeated handling on sympathetic-adrenomedullary and pituitary-adrenocortical activity in rats. Psychoneuroendocrinology 18, 163–174 (1993).
pubmed: 8390698
doi: 10.1016/0306-4530(93)90001-2
Gouveia, K. & Hurst, J. L. Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS ONE 8, e66401 (2013).
pubmed: 23840458
pmcid: 3688777
doi: 10.1371/journal.pone.0066401
Gouveia, K. & Hurst, J. L. Optimising reliability of mouse performance in behavioural testing: The major role of non-aversive handling. Sci. Rep. 7, 44999 (2017).
pubmed: 28322308
pmcid: 5359560
doi: 10.1038/srep44999
Hurst, J. L. & West, R. S. Taming anxiety in laboratory mice. Nat. Methods 7, 825–826 (2010).
pubmed: 20835246
doi: 10.1038/nmeth.1500
Clarkson, J. M., Dwyer, D. M., Flecknell, P. A., Leach, M. C. & Rowe, C. Handling method alters the hedonic value of reward in laboratory mice. Sci. Rep. 8, 2448 (2018).
pubmed: 29402923
pmcid: 5799408
doi: 10.1038/s41598-018-20716-3
Henderson, L. J., Dani, B., Serrano, E. M. N., Smulders, T. V. & Roughan, J. V. Benefits of tunnel handling persist after repeated restraint, injection and anaesthesia. Sci. Rep. 10, (2020).
Sensini, F. et al. The impact of handling technique and handling frequency on laboratory mouse welfare is sex-specific. Sci. Rep. 10, 17281 (2020).
pubmed: 33057118
pmcid: 7560820
doi: 10.1038/s41598-020-74279-3
Ghosal, S. et al. Mouse handling limits the impact of stress on metabolic endpoints. Physiol. Behav. 150, 31–37 (2015).
pubmed: 26079207
pmcid: 4546855
doi: 10.1016/j.physbeh.2015.06.021
Hull, M. A., Reynolds, P. S. & Nunamaker, E. A. Effects of non-aversive versus tail-lift handling on breeding productivity in a C57BL/6J mouse colony. PLoS ONE 17, e0263192 (2022).
pubmed: 35089969
pmcid: 8797240
doi: 10.1371/journal.pone.0263192
Henderson, L. J., Smulders, T. V. & Roughan, J. V. Identifying obstacles preventing the uptake of tunnel handling methods for laboratory mice: An international thematic survey. PLoS ONE 15, e0231454 (2020).
pubmed: 32287297
pmcid: 7156035
doi: 10.1371/journal.pone.0231454
Ono, M. et al. Does the routine handling affect the phenotype of disease model mice?. Jpn. J. Vet. Res. 64, 265–271 (2016).
pubmed: 29786176
Guerra, S., Chesworth, R., Weickert, C. S. & Karl, T. Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia. Behav. Brain Res. 405, 113166 (2021).
pubmed: 33588020
doi: 10.1016/j.bbr.2021.113166
Kennedy-Wood, K., Ng, C. A. S., Alaiyed, S., Foley, P. L. & Conant, K. Increased MMP-9 levels with strain-dependent stress resilience and tunnel handling in mice. Behav. Brain Res. 408, 113288 (2021).
pubmed: 33836170
pmcid: 8102390
doi: 10.1016/j.bbr.2021.113288
Gouveia, K. & Hurst, J. L. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci. Rep. 9, 20305 (2019).
pubmed: 31889107
pmcid: 6937263
doi: 10.1038/s41598-019-56860-7
Willner, P. Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90–110 (2005).
pubmed: 16037678
doi: 10.1159/000087097
Mineur, Y. S., Belzung, C. & Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav. Brain Res. 175, 43–50 (2006).
pubmed: 17023061
doi: 10.1016/j.bbr.2006.07.029
Nollet, M., Guisquet, A.-M. Le & Belzung, C. Models of depression: Unpredictable chronic mild stress in mice. Curr. Protoc. Pharmacol. 61, 5.65.1–5.65.17 (2013).
Zhu, S., Shi, R., Wang, J., Wang, J. F. & Li, X. M. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. NeuroReport 25, 1151–1155 (2014).
pubmed: 25089805
doi: 10.1097/WNR.0000000000000243
Antoniuk, S., Bijata, M., Ponimaskin, E. & Wlodarczyk, J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci. Biobehav. Rev. 99, 101–116 (2019).
pubmed: 30529362
doi: 10.1016/j.neubiorev.2018.12.002
Zhu, S. et al. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 1576, 81–90 (2014).
pubmed: 24971831
doi: 10.1016/j.brainres.2014.06.002
Borrow, A. P. et al. Chronic variable stress alters hypothalamic-pituitary-adrenal axis function in the female mouse. Physiol. Behav. 209, 112613 (2019).
pubmed: 31299374
pmcid: 6693655
doi: 10.1016/j.physbeh.2019.112613
Sandrini, L. et al. Sub-chronic stress exacerbates the pro-thrombotic phenotype in BDNFVal/met mice: Gene–environment interaction in the modulation of arterial thrombosis. Int. J. Mol. Sci. 19, 3235 (2018).
pubmed: 30347685
pmcid: 6214083
doi: 10.3390/ijms19103235
Ulrich-Lai, Y. M. et al. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 291, 965–973 (2006).
doi: 10.1152/ajpendo.00070.2006
Kolbe, T., Palme, R., Tichy, A. & Rülicke, T. Lifetime dependent variation of stress hormone metabolites in feces of two laboratory mouse strains. PLoS ONE 10, e0136112 (2015).
pubmed: 26284365
pmcid: 4540567
doi: 10.1371/journal.pone.0136112
Lang, P. J., Davis, M. & Öhman, A. Fear and anxiety: Animal models and human cognitive psychophysiology. J. Affect. Disord. 61, 137–159 (2000).
pubmed: 11163418
doi: 10.1016/S0165-0327(00)00343-8
Katz, R. J., Roth, K. A. & Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neurosci. Biobehav. Rev. 5, 247–251 (1981).
pubmed: 7196554
doi: 10.1016/0149-7634(81)90005-1
Eliwa, H. et al. Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology 124, 105097 (2021).
pubmed: 33302237
doi: 10.1016/j.psyneuen.2020.105097
Muscat, R. & Willner, P. Suppression of sucrose drinking by chronic mild unpredictable stress: A methodological analysis. Neurosci. Biobehav. Rev. 16, 507–517 (1992).
pubmed: 1480347
doi: 10.1016/S0149-7634(05)80192-7
Nakamura, Y. & Suzuki, K. Tunnel use facilitates handling of ICR mice and decreases experimental variation. J. Vet. Med. Sci. 80, 886–892 (2018).
pubmed: 29657231
pmcid: 6021882
doi: 10.1292/jvms.18-0044
Roughan, J. V. & Sevenoaks, T. Welfare and scientific considerations of tattooing and ear tagging for mouse identification. J. Am. Assoc. Lab. Anim. Sci. 58, 142–153 (2019).
pubmed: 30813985
pmcid: 6433351
doi: 10.30802/AALAS-JAALAS-18-000057
Simon, P., Dupuis, R. & Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 61, 59–64 (1994).
pubmed: 7913324
doi: 10.1016/0166-4328(94)90008-6
Huang, Y., Zhou, W. & Zhang, Y. Bright lighting conditions during testing increase thigmotaxis and impair water maze performance in BALB/c mice. Behav. Brain Res. 226, 26–31 (2012).
pubmed: 21907245
doi: 10.1016/j.bbr.2011.08.043
Tannenbaum, B. & Anisman, H. Impact of chronic intermittent challenges in stressor-susceptible and resilient strains of mice. Biol. Psychiatry 53, 292–303 (2003).
pubmed: 12586448
doi: 10.1016/S0006-3223(02)01487-7
Malki, K. et al. Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains. BMC Genomics 16, 1–14 (2015).
doi: 10.1186/s12864-015-1431-6
Kopp, C., Vogel, E. & Misslin, R. Comparative study of emotional behaviour in three inbred strains of mice. Behav. Processes 47, 161–174 (1999).
pubmed: 24897311
doi: 10.1016/S0376-6357(99)00057-1
Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57 (2002).
pubmed: 12191791
doi: 10.1016/S0166-4328(01)00452-1
Miller, A. L. & Roughan, J. V. Welfare assessment, end-point refinement and the effects of non-aversive handling in C57BL/6 mice with Lewis lung cancer. Animals 12, 23 (2021).
pubmed: 35011129
pmcid: 8749757
doi: 10.3390/ani12010023
Hull, M. A., Reynolds, P. S. & Nunamaker, E. A. Effects of non-aversive versus tail-lift handling on breeding productivity in a C57BL/6J mouse colony. PLoS ONE 17, e0263192 (2022).
pubmed: 35089969
pmcid: 8797240
doi: 10.1371/journal.pone.0263192
Touma, C. et al. Mice selected for high versus low stress reactivity: A new animal model for affective disorders. Psychoneuroendocrinology 33, 839–862 (2008).
pubmed: 18502051
doi: 10.1016/j.psyneuen.2008.03.013
Strekalova, T., Spanagel, R., Bartsch, D., Henn, F. A. & Gass, P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacol. 29, 2007–2017 (2004).
doi: 10.1038/sj.npp.1300532
Strekalova, T. & Steinbusch, H. Factors of reproducibility of anhedonia induction in a chronic stress depression model in mice. NeuroMethods 42, 153–176 (2009).
doi: 10.1007/978-1-60761-303-9_9
Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P. & Haefely, W. E. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur. Neuropsychopharmacol. 2, 43–49 (1992).
pubmed: 1638173
doi: 10.1016/0924-977X(92)90035-7
Cheeta, S., Ruigt, G., Van Proosdij, J. & Willner, P. Changes in sleep architecture following chronic mild stress. Biol. Psychiatry 41, 419–427 (1997).
pubmed: 9034536
doi: 10.1016/S0006-3223(96)00058-3
Solberg, L. C., Horton, T. H. & Turek, F. W. Circadian rhythms and depression: effects of exercise in an animal model. Am. J. Physiol. 276, R152 (1999).
pubmed: 9887189
Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93, 358–364 (1987).
pubmed: 3124165
doi: 10.1007/BF00187257
Muscat, R., Papp, M. & Willner, P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology 109, 433–438 (1992).
pubmed: 1365858
doi: 10.1007/BF02247719
Packard, A. E. B., Egan, A. E. & Ulrich-Lai, Y. M. HPA axis- interaction with behavioral systems. Compr. Physiol. 6, 1897 (2016).
pubmed: 27783863
pmcid: 7219962
doi: 10.1002/cphy.c150042
Monteiro, S. et al. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry 6, 6 (2015).
pubmed: 25698978
pmcid: 4313595
doi: 10.3389/fpsyt.2015.00006
Gaskill, B. N., Karas, A. Z., Garner, J. P. & Pritchett-Corning, K. R. Nest building as an indicator of health and welfare in laboratory mice. J. Vis. Exp. 82, (2013).
Gjendal, K., Ottesen, J. L., Olsson, I. A. S. & Sørensen, D. B. Burrowing and nest building activity in mice after exposure to grid floor, isoflurane or ip injections. Physiol. Behav. 206, 59–66 (2019).
pubmed: 30790576
doi: 10.1016/j.physbeh.2019.02.022
Jirkof, P. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234, 139–146 (2014).
pubmed: 24525328
doi: 10.1016/j.jneumeth.2014.02.001
Scheggi, S., De Montis, M. G. & Gambarana, C. Making sense of rodent models of anhedonia. Int. J. Neuropsychopharmacol. 21, 1049 (2018).
pubmed: 30239762
pmcid: 6209858
doi: 10.1093/ijnp/pyy083
Anisman, H. & Matheson, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neurosci. Biobehav. Rev. 29, 525–546 (2005).
pubmed: 15925696
doi: 10.1016/j.neubiorev.2005.03.007
López-Salesansky, N., Chancellor, N., Wells, D. J., Whitfield, L. E. & Burn, C. C. Handling mice using gloves sprayed with alcohol-based hand sanitiser: acute effects on mouse behaviour. Anim. Technol. Welf. 20, 11–20 (2021).
Ueno, H. et al. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Sci. Rep. 10, 1–13 (2020).
doi: 10.1038/s41598-020-60530-4
du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).
doi: 10.1371/journal.pbio.3000410
Furman, O., Tsoory, M. & Chen, A. Differential chronic social stress models in male and female mice. Eur. J. Neurosci. 55, 2777 (2021).
pubmed: 34587653
doi: 10.1111/ejn.15481
Laber, K., Veatch, L. M., Lopez, M. F., Mulligan, J. K. & Lathers, D. M. R. Effects of housing density on weight gain, immune function, behavior, and plasma corticosterone concentrations in BALB/c and C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 47, 16 (2008).
pubmed: 18351717
pmcid: 2653995
Ibarguen-Vargas, Y., Surget, A., Touma, C., Palme, R. & Belzung, C. Multifaceted strain-specific effects in a mouse model of depression and of antidepressant reversal. Psychoneuroendocrinology 33, 1357–1368 (2008).
pubmed: 18790573
doi: 10.1016/j.psyneuen.2008.07.010
Meyer, N. et al. Impact of three commonly used blood sampling techniques on the welfare of laboratory mice: Taking the animal’s perspective. PLoS ONE 15, e0238895 (2020).
pubmed: 32898190
pmcid: 7478650
doi: 10.1371/journal.pone.0238895
Deacon, R. M. J. Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).
pubmed: 17406392
doi: 10.1038/nprot.2006.170
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. R package version 3.1–128. (2016). Available at: https://scholar.google.com/scholar?cluster=12539258000964812111&hl=en&oi=scholarr . (Accessed: 23rd June 2022)