Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI.
Alzheimer's disease
biomarkers
cortical thickness
ex vivo MRI
neurodegeneration
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
29
09
2022
received:
16
05
2022
accepted:
27
10
2022
pmc-release:
01
06
2024
medline:
13
6
2023
pubmed:
6
12
2022
entrez:
5
12
2022
Statut:
ppublish
Résumé
Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
Identifiants
pubmed: 36464907
doi: 10.1002/alz.12884
pmc: PMC10239526
mid: NIHMS1847378
doi:
Substances chimiques
alpha-Synuclein
0
tau Proteins
0
DNA-Binding Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2355-2364Subventions
Organisme : NIA NIH HHS
ID : R01 AG076434
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG017586
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG056014
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG066597
Pays : United States
Organisme : NIA NIH HHS
ID : U19 AG062418
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG072796
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG072979
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054519
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG069474
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS109260
Pays : United States
Informations de copyright
© 2022 the Alzheimer's Association.
Références
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035.
Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181-93.
Matej R, Tesar A, Rusina R. Alzheimer's disease and other neurodegenerative dementias in comorbidity: a clinical and neuropathological overview. Clin Biochem. 2019;73:26-31.
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197-204.
Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016;15(9):934-43.
Nag S, Yu L, Capuano AW, et al. Hippocampal sclerosis and TDP-43 pathology in aging and A lzheimer disease. Ann Neurol. 2015;77(6):942-52.
Schneider JA, Boyle PA, Arvanitakis Z, Bienias JL, Bennett DA. Subcortical infarcts, Alzheimer's disease pathology, and memory function in older persons. Ann Neurol. 2007;62(1):59-66.
Wilson RS, Yu L, Trojanowski JQ, et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 2013;70(11):1418-24.
Boyle P, Yu L, Wilson R, Schneider J, Bennett DA. Relation of neuropathology with cognitive decline among older persons without dementia. Front Aging Neurosci. 2013;5:50.
Jagust WJ, Zheng L, Harvey DJ, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63(1):72-80.
Shatil AS, Matsuda KM, Figley CR. A method for whole brain ex vivo magnetic resonance imaging with minimal susceptibility artifacts. Frontiers in neurology. 2016;7:208.
Augustinack JC, van der Kouwe AJ, Fischl B. Medial temporal cortices in ex vivo magnetic resonance imaging. J Comp Neurol. 2013;521(18):4177-88.
Iglesias JE, Augustinack JC, Nguyen K, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117-37.
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm. 2020;127(9):1229-56.
Wisse L, Ravikumar S, Ittyerah R, et al. Downstream effects of polypathology on neurodegeneration of medial temporal lobe subregions. Acta Neuropathol Commun. 2021;9(1):1-11.
Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia. 2018;14(4):535-62.
Tisdall MD, Ohm DT, Lobrovich R, et al. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. NeuroImage: Clinical. 2022;33:102913.
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's Dementia. 2012;8(1):1-13.
Khandelwal P, Sadaghiani S, Ravikumar S, et al. Gray Matter Segmentation in Ultra High Resolution 7 Tesla ex vivo T2w MRI of Human Brain Hemispheres. arXiv preprint arXiv:211007711. 2021.
Yushkevich PA, Pashchinskiy A, Oguz I, et al. User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics. 2019;17(1):83-102.
Ogniewicz RL, Ilg M, editors. Voronoi skeletons: theory and applications. CVPR; 1992.
Toledo JB, Van Deerlin VM, Lee EB, et al. A platform for discovery: the University of Pennsylvania integrated neurodegenerative disease biobank. Alzheimer's Dementia. 2014;10(4):477-84. e1.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc: Ser B (Methodological). 1995;57(1):289-300.
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116-28.
Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774-81.
LaPoint MR, Chhatwal JP, Sepulcre J, Johnson KA, Sperling RA, Schultz AP. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage. 2017;157:612-22.
Harrison TM, Du R, Klencklen G, Baker SL, Jagust WJ. Distinct effects of beta-amyloid and tau on cortical thickness in cognitively healthy older adults. Alzheimer's & dementia. 2021;17(7):1085-96.
Xia C, Makaretz SJ, Caso C, et al. Association of in vivo [18F] AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 2017;74(4):427-36.
Mak E, Bethlehem RA, Romero-Garcia R, et al. In vivo coupling of tau pathology and cortical thinning in Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment Dis Monit. 2018;10:678-87.
Das SR, Xie L, Wisse LE, et al. In vivo measures of tau burden are associated with atrophy in early Braak stage medial temporal lobe regions in amyloid-negative individuals. Alzheimer's Dementia. 2019;15(10):1286-95.
Whitwell JL, Graff-Radford J, Tosakulwong N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer's disease. Alzheimer's Dementia. 2018;14(8):1005-14.
Frigerio I, Boon BD, Lin C-P, et al. Amyloid-β, p-tau and reactive microglia are pathological correlates of MRI cortical atrophy in Alzheimer's disease. Brain communications. 2021;3(4):fcab281.
Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2008;19(3):497-510.
Arnold SE, Hyman BT, Van Hoesen GW. Neuropathologic changes of the temporal pole in Alzheimer's disease and Pick's disease. Arch Neurol. 1994;51(2):145-50.
Herlin B, Navarro V, Dupont S. The temporal pole: From anatomy to function-a literature appraisal. J Chem Neuroanat. 2021;113:101925.
Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1(3):213-6.
Van Hoesen GW, Hyman BT, Damasio AR. Entorhinal cortex pathology in Alzheimer's disease. Hippocampus. 1991;1(1):1-8.
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389-404.
Whitwell J, Josephs K, Murray M, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology. 2008;71(10):743-9.
Gómez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol. 1997;41(1):17-24.
Dawe RJ, Bennett DA, Schneider JA, Arfanakis K. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One. 2011;6(10):e26286.
Ohm DT, Fought AJ, Martersteck A, et al. Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathol. 2021;31(1):189-204.
Xie L, Das SR, Wisse LE, et al. Early tau burden correlates with higher rate of atrophy in transentorhinal cortex. J Alzheimer's Dis. 2018;62(1):85-92.
La Joie R, Visani AV, Baker SL, Brown JA, et al. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med. 2020;12(524):eaau5732.
King A, Bodi I, Nolan M, Troakes C, Al-Sarraj S. Assessment of the degree of asymmetry of pathological features in neurodegenerative diseases. What is the significance for brain banks? J Neural Transm. 2015;122(10):1499-508.
Stefanits H, Budka H, Kovacs GG. Asymmetry of neurodegenerative disease-related pathologies: a cautionary note. Acta Neuropathol. 2012;123(3):449-52.
Ravikumar S, Wisse LEM, Lim S, et al. Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology. Acta Neuropathol Commun. 2021;9(1):173.
Yushkevich PA, Muñoz López M, Iñiguez de Onzoño Martin María M, et al. Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. Brain. 2021;144(9):2784-97.
Ravikumar S, Wisse L, Lim S, et al., editors. Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer's Disease Pathology Using Ex vivo Imaging2021. Springer International Publishing.