Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats.


Journal

International journal of cardiology
ISSN: 1874-1754
Titre abrégé: Int J Cardiol
Pays: Netherlands
ID NLM: 8200291

Informations de publication

Date de publication:
01 02 2023
Historique:
received: 02 09 2022
revised: 10 11 2022
accepted: 01 12 2022
pubmed: 9 12 2022
medline: 4 1 2023
entrez: 8 12 2022
Statut: ppublish

Résumé

Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway. The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis. High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo. High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.

Sections du résumé

BACKGROUND
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway.
METHODS
The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis.
RESULTS
High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo.
CONCLUSION
High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.

Identifiants

pubmed: 36481261
pii: S0167-5273(22)01873-3
doi: 10.1016/j.ijcard.2022.12.003
pii:
doi:

Substances chimiques

Apoptosis Regulatory Proteins 0
ferulic acid AVM951ZWST
FUNDC1 protein, rat 0
Glucose IY9XDZ35W2
Membrane Proteins 0
Mitochondrial Proteins 0
Pacs2 protein, rat 0
Vdac1 protein, rat 0
Vesicular Transport Proteins 0
Voltage-Dependent Anion Channel 1 EC 1.6.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

101-109

Informations de copyright

Copyright © 2022 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest We wish to confirm that there are no known conflicts of interest associated with this publication among authors and there has been no significant financial support for this work that could have influenced its outcome.

Auteurs

P Salin Raj (P)

Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.

Anupama Nair (A)

Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.

M R Preetha Rani (MR)

Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.

K Rajankutty (K)

Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India.

S Ranjith (S)

Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India.

K G Raghu (KG)

Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India. Electronic address: raghukgopal2009@gmail.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH