Fundus Photography Methodologies to Assess RP Patients.
Fundus photography
Near-infrared autofluorescence
Quantitative autofluorescence
Red-free photography
Short-wavelength autofluorescence
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
entrez:
9
12
2022
pubmed:
10
12
2022
medline:
15
12
2022
Statut:
ppublish
Résumé
The development of fundus photography and imaging has improved our ability to diagnose and monitor inherited retinal degenerations. Nowadays, color fundus photography has become a staple in evaluating patients with retinitis pigmentosa (RP). Other important multimodal forms of fundus photography used today include red-free fundus photography, short-wavelength autofluorescence, and near-infrared autofluorescence. These photography methodologies provide valuable information on the natural history of disease progression, which in turn can lead to the identification of viable outcome measurements for current and future therapeutic trials. Further advances and developments in the field of fundus imaging will help in our understanding of RP and allied disorders.
Identifiants
pubmed: 36481885
doi: 10.1007/978-1-0716-2651-1_7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
81-90Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Letocha C (1994) Hermann von Helmholtz: a century later. Arch Ophthalmol 112(12):1524–1525
doi: 10.1001/archopht.1994.01090240030021
Tasman W (1996) History of retina 1896-1996. Ophthalmology 103(8 Suppl):S143–S152
doi: 10.1016/S0161-6420(96)30771-9
Van Trigt AC. De oogspiegel Nederlandisch Lancet, third series, Utrecht, 1852–1853;2d:417–509
Donders FC (1855) Beitrage zur pathologischen Anatomic des Auges. Graefes Arch Klin Exp Ophthalmol 2:106–118; 1857;1:139–165
doi: 10.1007/BF02720791
Pearlman JT, Flood SR, Seiff SR (1976) Retinitis pigmentosa without pigment. Am J Ophthalmol 81(4):417–419
doi: 10.1016/0002-9394(76)90296-8
Takahashi VKL, Takiuti JT, Jauregui R, Mahajan VB, Tsang SH (2018) Rates of bone spicule pigment appearance in patients with retinitis pigmentosa sine pigmento. Am J Ophthalmol 195:176–180
doi: 10.1016/j.ajo.2018.07.036
Jackman WT, Webster JD (1886) On photographing the retina of the living human eye. Philadel Photogr 23:340–341
Panwar N, Huang P, Lee J et al (2016) Fundus photography in the 21st century – a review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health 22(3):198–208. https://doi.org/10.1089/tmj.2015.0068
doi: 10.1089/tmj.2015.0068
Verbakel SK, van Huet RAC, Boon CJF et al (2018) Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 66:157–186
doi: 10.1016/j.preteyeres.2018.03.005
Schuerch K, Marsiglia M, Lee W, Tsang SH, Sparrow JR (2016) Multimodal imaging of disease-associated pigmentary changes in retinitis pigmentosa. Retina 36 Suppl 1(Suppl 1):S147–S158
doi: 10.1097/IAE.0000000000001256
Sengillo JD, Cho GY, Paavo M et al (2019) Hyperautofluorescent dots are characteristic in ceramide kinase like-associated retinal degeneration. Sci Rep 9(1):876. Published 2019 Jan 29
doi: 10.1038/s41598-018-37578-4
Chung DC, Bertelsen M, Lorenz B et al (2019) The natural history of inherited retinal dystrophy due to biallelic mutations in the RPE65 gene. Am J Ophthalmol 199:58–70
doi: 10.1016/j.ajo.2018.09.024
Chao DL, Burr A, Pennesi M (2019) RPE65-Related Leber Congenital Amaurosis / Early-Onset Severe Retinal Dystrophy. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; November 14
Liew G, Strong S, Bradley P et al (2019) Prevalence of cystoid macular oedema, epiretinal membrane and cataract in retinitis pigmentosa. Br J Ophthalmol 103(8):1163–1166
doi: 10.1136/bjophthalmol-2018-311964
Rotsos TG, Moschos MM (2008) Cystoid macular edema. Clin Ophthalmol 2(4):919–930. https://doi.org/10.2147/opth.s4033
doi: 10.2147/opth.s4033
Stevenson W, Prospero Ponce CM, Agarwal DR, Gelman R, Christoforidis JB (2016) Epiretinal membrane: optical coherence tomography-based diagnosis and classification. Clin Ophthalmol 10:527–534. Published 2016 Mar 29. https://doi.org/10.2147/OPTH.S97722
doi: 10.2147/OPTH.S97722
Uji A, Muraoka Y, Yoshimura N (2019) Hidden information in color fundus photographs is revealed by the decorrelation stretching method. Retin Cases Brief Rep 13(2):176–180
doi: 10.1097/ICB.0000000000000557
Bernardes R, Serranho P, Lobo C (2011) Digital ocular fundus imaging: a review. Ophthalmologica 226(4):161–181
doi: 10.1159/000329597
Elsner A, Burns S, Weiter J, Delori F (1996) Infrared imaging of sub-retinal structures in the human ocular fundus. Vis Res 36:191–205
doi: 10.1016/0042-6989(95)00100-E
Fernández E, Unterhuber A, Považay B, Hermann B, Artal P, Drexler W (2006) Chromatic aberration correction of the human eye for retinal imaging in the near infrared. Opt Express 14:6213–6225
doi: 10.1364/OE.14.006213
Hubbard L, Danis R, Neider M, Thayer D, Wabers H, White J, Pugliese A, Pugliese M (2008) Group ARED2R: brightness, contrast, and color balance of digital versus film retinal images in the Age-Related Eye Disease Study 2. Invest Ophthalmol Vis Sci 49:3269–3282
doi: 10.1167/iovs.07-1267
Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208. https://doi.org/10.1109/RBME.2010.2084567
doi: 10.1109/RBME.2010.2084567
Hirakawa H, Iijima H, Gohdo T, Tsukahara S (1999) Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa. Am J Ophthalmol 128(2):185–191
doi: 10.1016/S0002-9394(99)00100-2
Allen L (1964) Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol 57:13–28
doi: 10.1016/0002-9394(64)92027-6
Webb RH, Hughes GW (1981) Scanning laser ophthalmoscope. IEEE Trans Biomed Eng 28(4):488–492
doi: 10.1109/TBME.1981.324734
Mizuno K, Majima A, Ozawa K, Ito H (1968) Red-free light fundus photography. Photographic optogram. Invest Ophthalmol 7(3):241–249
Venkatesh P, Sharma R, Vashist N, Vohra R, Garg S (2015) Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography. Int Ophthalmol 35(5):635–640
doi: 10.1007/s10792-012-9620-7
Frost WA (1902) Unusually well-marked retinal reflex. Trans Ophthalmol Soc UK 22:208–209
Falls HF, Cotterman CW (1948) Choroidal degeneration: a sex-linked form in which heterozygous women exhibit a tapetal-like retinal reflex. Arch Ophthalmol 40:685–703
doi: 10.1001/archopht.1948.00900030700009
Cideciyan AV, Jacobson SG (1994) Image analysis of the tapetal-like reflex in carriers of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 35(11):3812–3824
Flaxel CJ, Jay M, Thiselton DL et al (1999) Difference between RP2 and RP3 phenotypes in X linked retinitis pigmentosa. Br J Ophthalmol 83(10):1144–1148
doi: 10.1136/bjo.83.10.1144
Acton JH, Greenberg JP, Greenstein VC et al (2013) Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. Exp Eye Res 113:41–48
doi: 10.1016/j.exer.2013.05.003
Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36(3):718–729
Von Ruckmann A, Fitzke FW, Bird AC (1996) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Ophthalmic Lit 1(49):33
Von Ruckmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 38(2):478–486
Sparrow JR, Wu Y, Kim CY, Zhou J (2010) Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 51(2):247–261
doi: 10.1194/jlr.R000687
Sparrow JR, Yoon KD, Wu Y, Yamamoto K (2010) Interpretations of fundus autofluorescence from studies of the bisretinoids of the retina. Invest Ophthalmol Vis Sci 51(9):4351–4357
doi: 10.1167/iovs.10-5852
Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47(8):3556–3564
doi: 10.1167/iovs.06-0122
Kellner U, Kellner S, Weber BH, Fiebig B, Weinitz S, Ruether K (2009) Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa. Eye (Lond) 23(6):1349–1359
doi: 10.1038/eye.2008.280
Robson AG, El-Amir A, Bailey C et al (2003) Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci 44(8):3544–3550
doi: 10.1167/iovs.02-1278
Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG (2011) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(1):101–108
doi: 10.1167/iovs.10-5799
Sujirakul T, Lin MK, Duong J, Wei Y, Lopez-Pintado S, Tsang SH (2015) Multimodal imaging of central retinal disease progression in a 2-year mean follow-up of retinitis Pigmentosa. Am J Ophthalmol 160(4):786–98.e4. https://doi.org/10.1016/j.ajo.2015.06.032
doi: 10.1016/j.ajo.2015.06.032
Fakin A, Jarc-Vidmar M, Glavac D, Bonnet C, Petit C, Hawlina M (2012) Fundus autofluorescence and optical coherence tomography in relation to visual function in usher syndrome type 1 and 2. Vis Res 75:60–70
doi: 10.1016/j.visres.2012.08.017
Lenassi E, Troeger E, Wilke R, Hawlina M (2012) Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring. Invest Ophthalmol Vis Sci 53(1):47–52
doi: 10.1167/iovs.11-8048
Robson AG, Saihan Z, Jenkins SA et al (2006) Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90(4):472–479. https://doi.org/10.1136/bjo.2005.082487
doi: 10.1136/bjo.2005.082487
Jauregui R, Takahashi VKL, Park KS et al (2019) Multimodal structural disease progression of retinitis pigmentosa according to mode of inheritance. Sci Rep 9(1):10712
doi: 10.1038/s41598-019-47251-z
Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL (2007) Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci 48:1298–1304
doi: 10.1167/iovs.06-0971
Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40
doi: 10.1186/1750-1172-1-40
Delori F, Greenberg JP, Woods RL et al (2011) Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 52(13):9379–9390
doi: 10.1167/iovs.11-8319
Sparrow JR, Duncker T, Schuerch K, Paavo M, de Carvalho JRL Jr (2019) Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 74:100774
doi: 10.1016/j.preteyeres.2019.100774
Greenberg JP, Duncker T, Woods RL, Smith RT, Sparrow JR, Delori FC (2013) Quantitative fundus autofluorescence in healthy eyes. Invest Ophthalmol Vis Sci 54(8):5684–5693
doi: 10.1167/iovs.13-12445
Duncker T, Greenberg JP, Ramachandran R et al (2014) Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 55(3):1471–1482
doi: 10.1167/iovs.13-13834
Schuerch K, Woods RL, Lee W et al (2017) Quantifying fundus autofluorescence in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 58(3):1843–1855
doi: 10.1167/iovs.16-21302
Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111(8):1585–1594
doi: 10.1016/j.ophtha.2004.01.033
Duncker T, Tabacaru MR, Lee W, Tsang SH, Sparrow JR, Greenstein VC (2013) Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 54(1):585–591
doi: 10.1167/iovs.12-11176
Jauregui R, Park KS, Duong JK, Sparrow JR, Tsang SH (2018) Quantitative comparison of near-infrared versus short-wave autofluorescence imaging in monitoring progression of retinitis pigmentosa. Am J Ophthalmol 194:120–125
doi: 10.1016/j.ajo.2018.07.012