The Scaffold Immunophilin FKBP51 Is a Phosphoprotein That Undergoes Dynamic Mitochondrial-Nuclear Shuttling.
FKBP51
immunophilin
nuclear-mitochondrial shuttling
phosphoamino acid
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
25 Nov 2022
25 Nov 2022
Historique:
received:
08
09
2022
revised:
14
11
2022
accepted:
22
11
2022
entrez:
11
12
2022
pubmed:
12
12
2022
medline:
15
12
2022
Statut:
epublish
Résumé
The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus.
Identifiants
pubmed: 36497030
pii: cells11233771
doi: 10.3390/cells11233771
pmc: PMC9739885
pii:
doi:
Substances chimiques
Phosphoproteins
0
Tacrolimus Binding Proteins
EC 5.2.1.-
Peptidylprolyl Isomerase
EC 5.2.1.8
Tyrosine
42HK56048U
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agencia Nacional de Promoción Científica y Tecnológica
ID : PICT 2020-0640 AND PICT 2018-0546
Organisme : Universidad of Buenos Aires
ID : 20020170100558BA
Références
PLoS One. 2013 Aug 01;8(8):e70216
pubmed: 23936393
Mol Oncol. 2016 Aug;10(7):1086-98
pubmed: 27233944
Oncotarget. 2017 Apr 16;8(31):51888-51906
pubmed: 28881698
Pharmacol Ther. 2020 Nov;215:107623
pubmed: 32622856
Transplantation. 2002 Jun 15;73(11):1835-8
pubmed: 12085010
J Neurochem. 2019 Aug;150(3):312-329
pubmed: 30734931
Neural Regen Res. 2022 Mar;17(3):555-556
pubmed: 34380887
Cells. 2021 Sep 09;10(9):
pubmed: 34572014
Br J Pharmacol. 2012 May;166(2):637-49
pubmed: 22091865
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14326-31
pubmed: 16176985
Int J Mol Sci. 2017 Dec 05;18(12):
pubmed: 29206196
Trends Endocrinol Metab. 2021 Oct;32(10):827-838
pubmed: 34420854
Biochim Biophys Acta. 2012 Mar;1823(3):722-9
pubmed: 22155719
J Immunol. 2005 May 15;174(10):6030-8
pubmed: 15879096
Protein Sci. 1993 Sep;2(9):1511-9
pubmed: 8401235
Mol Cell Endocrinol. 1998 Sep 25;144(1-2):119-30
pubmed: 9863632
J Biol Chem. 2011 Aug 26;286(34):30152-60
pubmed: 21730050
PLoS One. 2014 May 01;9(5):e95992
pubmed: 24788966
Nat Protoc. 2015 Jun;10(6):845-58
pubmed: 25950237
Biochim Biophys Acta Mol Cell Res. 2021 May;1868(6):119000
pubmed: 33675851
Mol Vis. 2011;17:1172-81
pubmed: 21617754
Adipocyte. 2015 May 13;4(4):239-47
pubmed: 26451279
Trends Endocrinol Metab. 2011 Dec;22(12):481-90
pubmed: 21889356
J Biol Chem. 1997 Jun 27;272(26):16224-30
pubmed: 9195923
J Biol Chem. 2005 Feb 11;280(6):4609-16
pubmed: 15591061
J Cell Sci. 2020 Jun 16;133(12):
pubmed: 32467326
Biochem J. 1998 Aug 1;333 ( Pt 3):555-63
pubmed: 9677313
Biochemistry. 2002 Apr 30;41(17):5581-7
pubmed: 11969419
Biochem Pharmacol. 2020 Dec;182:114204
pubmed: 32828804
J Cell Sci. 2013 Dec 1;126(Pt 23):5357-68
pubmed: 24101724
Int J Mol Sci. 2021 Oct 16;22(20):
pubmed: 34681832
Int J Cancer. 2016 Feb 15;138(4):797-808
pubmed: 25754838
J Neurochem. 2010 Nov;115(3):716-34
pubmed: 20796173
Subcell Biochem. 2015;78:35-68
pubmed: 25487015
Methods. 2002 Apr;26(4):292-7
pubmed: 12054919
Biomolecules. 2019 Feb 01;9(2):
pubmed: 30717249
Biomolecules. 2019 Jan 21;9(1):
pubmed: 30669684
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8
pubmed: 24782522
Antioxid Redox Signal. 2003 Dec;5(6):771-80
pubmed: 14588150
J Histochem Cytochem. 2022 Jan;70(1):9-16
pubmed: 34165350
PLoS Biol. 2021 Jun 2;19(6):e3001281
pubmed: 34077419
J Biol Chem. 2014 Sep 19;289(38):26263-26276
pubmed: 25104352
Diabetes Metab Syndr Obes. 2020 Feb 18;13:439-450
pubmed: 32110077
FEBS J. 2013 May;280(9):1944-65
pubmed: 23461806
Cell Death Dis. 2013 Apr 04;4:e578
pubmed: 23559012
Oncol Lett. 2016 Aug;12(2):1315-1322
pubmed: 27446431
Cell Death Dis. 2010 Jul 15;1:e55
pubmed: 21364660
Pigment Cell Melanoma Res. 2015 Jul;28(4):442-52
pubmed: 25895097
J Inflamm Res. 2020 Dec 02;13:1057-1073
pubmed: 33293849