Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status.
muscle
preterm
vitamin D
Journal
Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595
Informations de publication
Date de publication:
27 Nov 2022
27 Nov 2022
Historique:
received:
22
10
2022
revised:
14
11
2022
accepted:
16
11
2022
entrez:
11
12
2022
pubmed:
12
12
2022
medline:
15
12
2022
Statut:
epublish
Résumé
Whilst several studies have explored adolescent metabolic and cognitive function after preterm birth, few have explored muscle function and physical activity. We set out to examine the relationship between gestational age and muscle metabolism in a cohort of adolescents who were born preterm. Participants were recruited from the Newcastle preterm birth growth study cohort. They did not have severe neurological disease and were not on daily medication. Participants underwent an assessment of oxidative muscle function using phosphorus magnetic resonance spectroscopy that included the half-time for recovery of equilibrium of phosphocreatine, τ½PCr. In addition, we measured key variables that might affect muscle function including physical activity levels determined by 3-day accelerometry, body composition using air displacement plethysmography, insulin sensitivity using the homeostatic model assessment/Matsuda index and serum vitamin D concentrations. 60 adolescents (35F) median age 15.6 years (range 12.1−18.8) with a median gestation of 31 weeks (range 24 to 34 weeks) underwent a single assessment. Males were more active and spent less time in sedentary mode. Time spent in light activity was associated with insulin sensitivity (IS) (Matsuda Index; p < 0.05) but there were no strong correlations between activity levels and gestational age. Greater fat mass, waist circumference and body mass index were all associated with lower IS. Gestational age was negatively associated with adjusted measures of oxidative muscle function (τ½PCr). In a stepwise multivariate linear regression model, gestational age at birth was the most significant predictor of oxidative muscle function (p = 0.005). Higher serum vitamin D levels were also associated with faster phosphocreatine recovery time (p = 0.045). Oxidative function in the skeletal muscle of adolescents born preterm is associated with gestational age and vitamin D concentrations. Our study suggests that being born preterm may have a long-term impact on muscle metabolism.
Identifiants
pubmed: 36501074
pii: nu14235045
doi: 10.3390/nu14235045
pmc: PMC9736929
pii:
doi:
Substances chimiques
Vitamin D
1406-16-2
Phosphocreatine
020IUV4N33
Vitamins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Medical Research Council
ID : MR/N020588/1
Pays : United Kingdom
Organisme : Special Trustees Newcastle Healthcare Charity
ID : NA
Organisme : Novo Nordisk (United Kingdom)
ID : NA
Organisme : Nutricia (United Kingdom)
ID : NA
Références
J Clin Endocrinol Metab. 2013 Mar;98(3):E509-13
pubmed: 23393184
Diabetes Care. 2008 Aug;31(8):1644-9
pubmed: 18487474
Obesity (Silver Spring). 2012 Nov;20(11):2296-301
pubmed: 22402737
J Pediatr. 2005 Jun;146(6):732-7
pubmed: 15973308
Clin Endocrinol (Oxf). 2014 Jan;80(1):107-14
pubmed: 23711232
Arch Dis Child Fetal Neonatal Ed. 2014 Mar;99(2):F166-8
pubmed: 23852093
Int J Pediatr Obes. 2010;5(1):3-18
pubmed: 19562608
J Pediatr (Rio J). 2014 Jan-Feb;90(1):28-34
pubmed: 24140383
Diabetes. 2008 Oct;57(10):2619-25
pubmed: 18591391
Int J Obes (Lond). 2014 Aug;38(8):1089-96
pubmed: 24285336
Am J Clin Nutr. 2002 Mar;75(3):453-67
pubmed: 11864850
NMR Biomed. 1993 Jul-Aug;6(4):248-53
pubmed: 8217526
Pediatrics. 2005 Jul;116(1):e58-65
pubmed: 15997047
Am J Clin Nutr. 2004 May;79(5):820-5
pubmed: 15113720
Am J Prev Med. 2012 May;42(5):445-51
pubmed: 22516483
Arch Dis Child. 2016 Nov;101(11):1026-1031
pubmed: 27288431
Pediatr Res. 2014 Jan;75(1-1):75-80
pubmed: 24121425
Br J Nutr. 2013 Jul 14;110(1):156-63
pubmed: 23182428
Clin Sci (Lond). 2011 Aug;121(4):169-77
pubmed: 21388348
Arch Dis Child. 2008 Dec;93(12):1054-8
pubmed: 18782845
Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):113-9
pubmed: 20150805
BMC Pediatr. 2013 Dec 20;13:213
pubmed: 24359608
Diabetes Metab Syndr Obes. 2015 Feb 13;8:115-20
pubmed: 25709484
J Magn Reson. 1999 Sep;140(1):120-30
pubmed: 10479554
J Clin Endocrinol Metab. 2020 Aug 1;105(8):
pubmed: 32179891
BMC Public Health. 2015 Nov 30;15:1197
pubmed: 26620188
Am J Clin Nutr. 2013 Apr;97(4):774-81
pubmed: 23407306
Stat Med. 1998 Feb 28;17(4):407-29
pubmed: 9496720
PLoS One. 2012;7(2):e32430
pubmed: 22384247
J Intern Med. 2010 Apr;267(4):394-401
pubmed: 20433583
Diabetes Care. 1999 Sep;22(9):1462-70
pubmed: 10480510
Pediatrics. 2013 Apr;131(4):e1240-63
pubmed: 23509172
Pediatr Res. 2005 Nov;58(5):855-60
pubmed: 16183813
J Sports Sci. 2008 Dec;26(14):1557-65
pubmed: 18949660
J Phys Act Health. 2011 May;8(4):543-7
pubmed: 21597127
J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):909-13
pubmed: 149779
Ann Clin Biochem. 1990 Sep;27 ( Pt 5):496-8
pubmed: 2281932
Pediatr Res. 2011 Nov;70(5):507-12
pubmed: 21772225
Diabetes Care. 2004 Jun;27(6):1487-95
pubmed: 15161807
Am J Physiol. 1992 Mar;262(3 Pt 1):E289-94
pubmed: 1550222
Am J Health Promot. 2015 May-Jun;29(5):277-84
pubmed: 24575724
Arch Pathol Lab Med. 1985 Mar;109(3):238-42
pubmed: 3838454
J Clin Invest. 2005 Jul;115(7):1699-702
pubmed: 16007246
Mol Cell Endocrinol. 2006 Feb 26;246(1-2):21-33
pubmed: 16388892
J Nutr. 2009 Feb;139(2):329-34
pubmed: 19106328
Arch Dis Child. 2014 Apr;99(4):362-8
pubmed: 24363362
Eur J Pediatr. 1979 Apr 25;131(1):49-60
pubmed: 436856
Pediatr Res. 1999 Oct;46(4):461-4
pubmed: 10509369
Metab Syndr Relat Disord. 2018 May;16(4):197-203
pubmed: 29649377
Obes Res. 2004 Nov;12(11):1797-804
pubmed: 15601975