Microscopic image-based classification of adipocyte differentiation by machine learning.


Journal

Histochemistry and cell biology
ISSN: 1432-119X
Titre abrégé: Histochem Cell Biol
Pays: Germany
ID NLM: 9506663

Informations de publication

Date de publication:
Apr 2023
Historique:
accepted: 17 11 2022
medline: 11 4 2023
pubmed: 13 12 2022
entrez: 12 12 2022
Statut: ppublish

Résumé

Adipocyte differentiation is a sequential process involving increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), adipocyte-specific gene expression, and accumulation of lipid droplets in the cytoplasm. Expression of the transcription factors involved is usually detected using canonical biochemical or biomolecular procedures such as Western blotting or qPCR of pooled cell lysates. While this provides a useful average index for adipogenesis for some populations, the precise stage of adipogenesis cannot be distinguished at the single-cell level, because the heterogenous nature of differentiation among cells limits the utility of averaged data. We have created a classifier to sort cells, and used it to determine the stage of adipocyte differentiation at the single-cell level. We used a machine learning method with microscopic images of cell stained for PPARγ and lipid droplets as input data. Our results show that the classifier can successfully determine the precise stage of differentiation. Stage classification and subsequent model fitting using the sequential reaction model revealed the action of pioglitazone and rosiglitazone to be promotion of transition from the stage of increased PPARγ expression to the next stage. This indicates that these drugs are PPARγ agonists, and that our classifier and model can accurately estimate drug action points and would be suitable for evaluating the stage/state of individual cells during differentiation or disease progression. The incorporation of both biochemical and morphological information derived from immunofluorescence image of cells and so overcomes limitations of current models.

Identifiants

pubmed: 36504003
doi: 10.1007/s00418-022-02168-z
pii: 10.1007/s00418-022-02168-z
doi:

Substances chimiques

PPAR gamma 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

313-327

Subventions

Organisme : JST Moonshot R&D Grant
ID : JPMJMS2021
Organisme : AMED-PRIME, AMED
ID : JP21gm6210015

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abdoh SF, Abo Rizka M, Maghraby FA (2018) Cervical cancer diagnosis using random forest classifier with SMOTE and feature reduction techniques. IEEE Access 6:59475–59485. https://doi.org/10.1109/ACCESS.2018.2874063
doi: 10.1109/ACCESS.2018.2874063
Aghasafari P, George U, Pidaparti R (2019) A review of inflammatory mechanism in airway diseases. Inflamm Res 68:59–74. https://doi.org/10.1007/s00011-018-1191-2
doi: 10.1007/s00011-018-1191-2 pubmed: 30306206
Akagi Y, Mori N, Kawamura T, Takayama Y, Kida YS (2021) Non-invasive cell classification using the paint Raman express spectroscopy system (PRESS). Sci Rep 11:8818. https://doi.org/10.1038/s41598-021-88056-3
doi: 10.1038/s41598-021-88056-3 pubmed: 33893362 pmcid: 8065115
Arkun Y, Yasemi M (2018) Dynamics and control of the ERK signaling pathway: sensitivity, bistability, and oscillations. PLoS ONE 13:e0195513. https://doi.org/10.1371/journal.pone.0195513
doi: 10.1371/journal.pone.0195513 pubmed: 29630631 pmcid: 5891012
Benchamana A, Mori H, MacDougald OA, Soodvilai S (2019) Regulation of adipocyte differentiation and metabolism by lansoprazole. Life Sci 239:116897. https://doi.org/10.1016/j.lfs.2019.116897
doi: 10.1016/j.lfs.2019.116897 pubmed: 31644894 pmcid: 7058925
Bernlohr DA, Doering TL, Kelly TJ, Lane MD (1985) Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem Biophys Res Commun 132:850–855. https://doi.org/10.1016/0006-291X(85)91209-4
doi: 10.1016/0006-291X(85)91209-4 pubmed: 2415129
Björntorp P, Sjöström L (1971) Number and size of adipose tissue fat cells in relation to metabolism in human obesity. Metabolism 20:703–713. https://doi.org/10.1016/0026-0495(71)90084-9
doi: 10.1016/0026-0495(71)90084-9 pubmed: 5090134
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324
doi: 10.1023/A:1010933404324
Burl RB, Ramseyer VD, Rondini EA et al (2018) Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 28:300-309.e4. https://doi.org/10.1016/j.cmet.2018.05.025
doi: 10.1016/j.cmet.2018.05.025 pubmed: 29937373 pmcid: 6082711
Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5:1538–1552. https://doi.org/10.1101/gad.5.9.1538
doi: 10.1101/gad.5.9.1538 pubmed: 1840554
Cao H, Sekiya M, Ertunc ME et al (2013) Adipocyte lipid chaperone aP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 17:768–778. https://doi.org/10.1016/j.cmet.2013.04.012
doi: 10.1016/j.cmet.2013.04.012 pubmed: 23663740 pmcid: 3755450
Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, New York, NY, USA, pp 785–794
Collins JM, Neville MJ, Pinnick KE et al (2011) De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 52:1683–1692. https://doi.org/10.1194/jlr.M012195
doi: 10.1194/jlr.M012195 pubmed: 21677304 pmcid: 3151688
Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734. https://doi.org/10.1038/nrm3198
doi: 10.1038/nrm3198 pubmed: 21952300 pmcid: 7171550
Echouffo-Tcheugui JB, Short MI, Xanthakis V et al (2019) Natural history of obesity subphenotypes: dynamic changes over two decades and prognosis in the Framingham Heart Study. J Clin Endocrinol Metab 104:738–752. https://doi.org/10.1210/jc.2018-01321
doi: 10.1210/jc.2018-01321 pubmed: 30339231
Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273. https://doi.org/10.1016/j.cmet.2006.07.001
doi: 10.1016/j.cmet.2006.07.001 pubmed: 17011499 pmcid: 1958996
Geetha R, Sivasubramanian S, Kaliappan M, Vimal S, Annamalai S (2019) Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier. J Med Syst 43:286. https://doi.org/10.1007/s10916-019-1402-6
doi: 10.1007/s10916-019-1402-6 pubmed: 31312985
Gerhold DL, Liu F, Jiang G et al (2002) Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-γ agonists. Endocrinology 143:2106–2118. https://doi.org/10.1210/endo.143.6.8842
doi: 10.1210/endo.143.6.8842 pubmed: 12021175
Guo W, Flanagan J, Jasuja R et al (2008) The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/β-catenin signaling pathways. J Biol Chem 283:9136–9145. https://doi.org/10.1074/jbc.M708968200
doi: 10.1074/jbc.M708968200 pubmed: 18203713 pmcid: 2431017
Hiraike Y, Waki H, Yu J et al (2017) NFIA co-localizes with PPARγ and transcriptionally controls the brown fat gene program. Nat Cell Biol 19:1081–1092. https://doi.org/10.1038/ncb3590
doi: 10.1038/ncb3590 pubmed: 28812581 pmcid: 5885759
Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM (1986) Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci U S A 83:3786–3790. https://doi.org/10.1073/pnas.83.11.3786
doi: 10.1073/pnas.83.11.3786 pubmed: 3520554 pmcid: 323608
InterAct Consortium, Langenberg C, Sharp SJ et al (2012) Long-term risk of incident Type 2 diabetes and measures of overall and regional obesity: The EPIC-InterAct case-cohort study. PLOS Med 9:e1001230. https://doi.org/10.1371/journal.pmed.1001230
doi: 10.1371/journal.pmed.1001230
Ishijima Y, Ohmori S, Uneme A et al (2019) The Gata2 repression during 3T3-L1 preadipocyte differentiation is dependent on a rapid decrease in histone acetylation in response to glucocorticoid receptor activation. Mol Cell Endocrinol 483:39–49. https://doi.org/10.1016/j.mce.2019.01.002
doi: 10.1016/j.mce.2019.01.002 pubmed: 30615908
Jackins V, Vimal S, Kaliappan M, Lee MY (2021) AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J Supercomput 77:5198–5219. https://doi.org/10.1007/s11227-020-03481-x
doi: 10.1007/s11227-020-03481-x
Ke G, Meng Q, Finley T et al. (2017) LightGBM: A highly efficient gradient boosting decision tree. In: Adv Neural Inf Process Syst. Curran Associates, Inc
Kim DNH, Lim AA, Teitell MA (2021) Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning. Sci Rep 11:19448. https://doi.org/10.1038/s41598-021-98567-8
doi: 10.1038/s41598-021-98567-8 pubmed: 34593878 pmcid: 8484462
Lauby-Secretan B, Scoccianti C, Loomis D et al (2016) Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med 375:794–798. https://doi.org/10.1056/NEJMsr1606602
doi: 10.1056/NEJMsr1606602 pubmed: 27557308 pmcid: 6754861
Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 18:1–5
MacQueen J (1967) Some methods for classification and analysis of multivariate observations Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Statistics 1:5.1:281–5.1:298
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M (2019) Correlation between nuclear morphology and adipogenic differentiation: Application of a combined experimental and computational modeling approach. Sci Rep 9:16381. https://doi.org/10.1038/s41598-019-52926-8
doi: 10.1038/s41598-019-52926-8 pubmed: 31705037 pmcid: 6842088
Merrick D, Sakers A, Irgebay Z et al (2019) Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364:eaav2501. https://doi.org/10.1126/science.aav2501
doi: 10.1126/science.aav2501 pubmed: 31023895 pmcid: 6816238
Morrison S, McGee SL (2015) 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 4:295–302. https://doi.org/10.1080/21623945.2015.1040612
doi: 10.1080/21623945.2015.1040612 pubmed: 26451286 pmcid: 4573194
Mor-Yossef Moldovan L, Lustig M, Naftaly A et al (2019) Cell shape alteration during adipogenesis is associated with coordinated matrix cues. J Cell Physiol 234:3850–3863. https://doi.org/10.1002/jcp.27157
doi: 10.1002/jcp.27157 pubmed: 30191963
Muniyappa R, Chen H, Montagnani M, Sherman A, Quon MJ (2020) Endothelial dysfunction due to selective insulin resistance in vascular endothelium: Insights from mechanistic modeling. Am J Physiol Endocrinol Metab 319:E629–E646. https://doi.org/10.1152/ajpendo.00247.2020
doi: 10.1152/ajpendo.00247.2020 pubmed: 32776829 pmcid: 7642854
Nassar M, Doan M, Filby A et al (2019) Label label-free identification of white blood cells using machine learning. Cytometry A 95:836–842. https://doi.org/10.1002/cyto.a.23794
doi: 10.1002/cyto.a.23794 pubmed: 31081599 pmcid: 6767740
Niioka H, Asatani S, Yoshimura A et al (2018) Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images. Hum Cell 31:87–93. https://doi.org/10.1007/s13577-017-0191-9
doi: 10.1007/s13577-017-0191-9 pubmed: 29235053
Nobusue H, Endo T, Kano K (2008) Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332:435–446. https://doi.org/10.1007/s00441-008-0593-9
doi: 10.1007/s00441-008-0593-9 pubmed: 18386066
Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
doi: 10.1093/jn/130.12.3122S pubmed: 11110885
Ohno S, Quek LE, Krycer JR et al (2020) Kinetic trans-omic analysis reveals key regulatory mechanisms for insulin-regulated glucose metabolism in adipocytes. iScience. https://doi.org/10.1016/j.isci.2020.101479
doi: 10.1016/j.isci.2020.101479 pubmed: 33294794 pmcid: 7695902
Ozaki Y, Yamada H, Kikuchi H et al (2019) Label label-free classification of cells based on supervised machine learning of subcellular structures. PLoS One 14:e0211347. https://doi.org/10.1371/journal.pone.0211347
doi: 10.1371/journal.pone.0211347 pubmed: 30695059 pmcid: 6350988
Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Peshdary V, Gagnon A, Sorisky A (2016) Effect of high glucose concentration on human preadipocytes and their response to macrophage-conditioned medium. Can J Diabetes 40:411–418. https://doi.org/10.1016/j.jcjd.2016.02.012
doi: 10.1016/j.jcjd.2016.02.012 pubmed: 27157387
Prokhorenkova L, Gusev G, Vorobev A et al. (2018) CatBoost: unbiased boosting with categorical features. In: Proceedings of the 32nd international conference on neural information processing systems. Curran Associates, Inc., Red Hook, NY, USA, pp 6639–6649
Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896. https://doi.org/10.1038/nrm2066
doi: 10.1038/nrm2066 pubmed: 17139329
Rosen ED, Sarraf P, Troy AE et al (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617. https://doi.org/10.1016/S1097-2765(00)80211-7
doi: 10.1016/S1097-2765(00)80211-7 pubmed: 10549292
Schupp M, Cristancho AG, Lefterova MI et al (2009) Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-γ depletion to revert the adipocyte phenotype. J Biol Chem 284:9458–9464. https://doi.org/10.1074/jbc.M809498200
doi: 10.1074/jbc.M809498200 pubmed: 19136559 pmcid: 2666598
Schwalie PC, Dong H, Zachara M et al (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559:103–108. https://doi.org/10.1038/s41586-018-0226-8
doi: 10.1038/s41586-018-0226-8 pubmed: 29925944
Si Z, Wang X, Sun C et al (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765. https://doi.org/10.1016/j.biopha.2019.108765
doi: 10.1016/j.biopha.2019.108765 pubmed: 30921703
Siersbæk R, Nielsen R, Mandrup S (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23:56–64. https://doi.org/10.1016/j.tem.2011.10.001
doi: 10.1016/j.tem.2011.10.001 pubmed: 22079269
Stachecka J, Kolodziejski PA, Noak M, Szczerbal I (2021) Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells. Sci Rep 11:1325. https://doi.org/10.1038/s41598-020-79384-x
doi: 10.1038/s41598-020-79384-x pubmed: 33446668 pmcid: 7809488
Subudhi A, Dash M, Sabut S (2020) Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern Biomed Eng 40:277–289. https://doi.org/10.1016/j.bbe.2019.04.004
doi: 10.1016/j.bbe.2019.04.004
Swain RJ, Jell G, Stevens MM (2008) Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy. J Cell Biochem 104:1427–1438. https://doi.org/10.1002/jcb.21720
doi: 10.1002/jcb.21720 pubmed: 18348254
Takenaka Y, Inoue I, Nakano T et al (2013) A novel splicing variant of peroxisome proliferator-activated receptor-γ (Pparγ1sv) cooperatively regulates adipocyte differentiation with PPARγ2. PLoS One 8:e65583. https://doi.org/10.1371/journal.pone.0065583
doi: 10.1371/journal.pone.0065583 pubmed: 23840343 pmcid: 3686765
Tang R, Zhang Z, Chen X et al (2020) 3D side-scattering imaging flow cytometer and convolutional neural network for label-free cell analysis. APL Photonics 5:126105. https://doi.org/10.1063/5.0024151
doi: 10.1063/5.0024151
Tong Q, Dalgin G, Xu H et al (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290:134–138. https://doi.org/10.1126/science.290.5489.134
doi: 10.1126/science.290.5489.134 pubmed: 11021798
Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141:3388–3396. https://doi.org/10.1210/endo.141.9.7637
doi: 10.1210/endo.141.9.7637 pubmed: 10965911
Vasseur-Cognet M, Lane MD (1993) trans-acting factors involved in adipogenic differentiation. Curr Opin Genet Dev 3:238–245. https://doi.org/10.1016/0959-437X(93)90029-O
doi: 10.1016/0959-437X(93)90029-O pubmed: 8504249
Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2
doi: 10.1038/s41592-019-0686-2 pubmed: 32015543 pmcid: 7056644
Wang S, Zhou Y, Qin X et al (2020) Label Label-free detection of rare circulating tumor cells by image analysis and machine learning. Sci Rep 10:12226. https://doi.org/10.1038/s41598-020-69056-1
doi: 10.1038/s41598-020-69056-1 pubmed: 32699281 pmcid: 7376046
White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E (2017) Association of in vivo adipose tissue cellular kinetics with markers of metabolic health in humans. J Clin Endocrinol Metab 102:2171–2178. https://doi.org/10.1210/jc.2016-4000
doi: 10.1210/jc.2016-4000 pubmed: 28323935 pmcid: 5505198
Wittrisch S, Klöting N, Mörl K et al (2020) NPY1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol Metab 31:163–180. https://doi.org/10.1016/j.molmet.2019.11.009
doi: 10.1016/j.molmet.2019.11.009 pubmed: 31918918
Wu Z, Xie Y, Bucher NL, Farmer SR (1995) Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev 9:2350–2363. https://doi.org/10.1101/gad.9.19.2350
doi: 10.1101/gad.9.19.2350 pubmed: 7557387
Wu Z, Rosen ED, Brun R et al (1999) Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158. https://doi.org/10.1016/S1097-2765(00)80306-8
doi: 10.1016/S1097-2765(00)80306-8 pubmed: 10078198
Yao K, Rochman ND, Sun SX (2019) Cell type classification and unsupervised morphological phenotyping from low-resolution images using deep learning. Sci Rep 9:13467. https://doi.org/10.1038/s41598-019-50010-9
doi: 10.1038/s41598-019-50010-9 pubmed: 31530889 pmcid: 6749053
Yeh WC, Cao Z, Classon M, McKnight SL (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181. https://doi.org/10.1101/gad.9.2.168
doi: 10.1101/gad.9.2.168 pubmed: 7531665

Auteurs

Yoshiyuki Noguchi (Y)

International Research Center for Neurointelligence, Institutes for Advanced Study, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan.

Masataka Murakami (M)

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.

Masayuki Murata (M)

Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, Kanagawa, 226-8503, Japan.

Fumi Kano (F)

Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, Kanagawa, 226-8503, Japan. kano.f.aa@m.titech.ac.jp.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.

Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu et al.
1.00
Animals Adipocytes, Brown Mice Cell Differentiation Male

Classifications MeSH