TIGIT inhibition and lenalidomide synergistically promote antimyeloma immune responses after stem cell transplantation in mice.
Animals
Mice
Hematopoietic Stem Cell Transplantation
Immunity
/ drug effects
Lenalidomide
/ pharmacology
Multiple Myeloma
/ drug therapy
Neoplasm Recurrence, Local
Receptors, IgG
Stem Cell Transplantation
/ adverse effects
Transplantation, Autologous
Tumor Microenvironment
Receptors, Immunologic
/ antagonists & inhibitors
Adaptive immunity
Bone marrow transplantation
Cancer immunotherapy
Immunology
Oncology
Journal
The Journal of clinical investigation
ISSN: 1558-8238
Titre abrégé: J Clin Invest
Pays: United States
ID NLM: 7802877
Informations de publication
Date de publication:
15 02 2023
15 02 2023
Historique:
received:
23
12
2021
accepted:
08
12
2022
pubmed:
14
12
2022
medline:
17
2
2023
entrez:
13
12
2022
Statut:
epublish
Résumé
Autologous stem cell transplantation (ASCT) with subsequent lenalidomide maintenance is standard consolidation therapy for multiple myeloma, and a subset of patients achieve durable progression-free survival that is suggestive of long-term immune control. Nonetheless, most patients ultimately relapse, suggesting immune escape. TIGIT appears to be a potent inhibitor of myeloma-specific immunity and represents a promising new checkpoint target. Here we demonstrate high expression of TIGIT on activated CD8+ T cells in mobilized peripheral blood stem cell grafts from patients with myeloma. To guide clinical application of TIGIT inhibition, we evaluated identical anti-TIGIT antibodies that do or do not engage FcγR and demonstrated that anti-TIGIT activity is dependent on FcγR binding. We subsequently used CRBN mice to investigate the efficacy of anti-TIGIT in combination with lenalidomide maintenance after transplantation. Notably, the combination of anti-TIGIT with lenalidomide provided synergistic, CD8+ T cell-dependent, antimyeloma efficacy. Analysis of bone marrow (BM) CD8+ T cells demonstrated that combination therapy suppressed T cell exhaustion, enhanced effector function, and expanded central memory subsets. Importantly, these immune phenotypes were specific to the BM tumor microenvironment. Collectively, these data provide a logical rationale for combining TIGIT inhibition with immunomodulatory drugs to prevent myeloma progression after ASCT.
Identifiants
pubmed: 36512425
pii: 157907
doi: 10.1172/JCI157907
pmc: PMC9927935
doi:
pii:
Substances chimiques
Lenalidomide
F0P408N6V4
Receptors, IgG
0
T cell Ig and ITIM domain protein, mouse
0
Receptors, Immunologic
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NCI NIH HHS
ID : P30 CA015704
Pays : United States
Organisme : NIH HHS
ID : S10 OD028685
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA244291
Pays : United States
Références
Nat Commun. 2020 Aug 24;11(1):4227
pubmed: 32839441
J Hematol Oncol. 2016 Nov 3;9(1):116
pubmed: 27809856
J Clin Oncol. 2016 Aug 10;34(23):2698-704
pubmed: 27269947
Clin Cancer Res. 2015 Oct 15;21(20):4607-18
pubmed: 25979485
Cell. 2015 Jul 2;162(1):184-97
pubmed: 26095251
Cancer Cell. 2014 Dec 8;26(6):923-937
pubmed: 25465800
Front Immunol. 2022 May 16;13:833531
pubmed: 35651622
Cell. 2021 Aug 19;184(17):4512-4530.e22
pubmed: 34343496
Asia Pac J Clin Oncol. 2018 Oct;14(5):e266-e274
pubmed: 29943497
Immunity. 2022 Mar 8;55(3):512-526.e9
pubmed: 35263569
Front Immunol. 2022 Feb 22;13:828319
pubmed: 35273608
J Immunol. 2012 Apr 15;188(8):3869-75
pubmed: 22427644
Blood. 2010 Aug 5;116(5):819-28
pubmed: 20435882
Cancer Res. 2007 Sep 15;67(18):8444-9
pubmed: 17875681
Immunity. 2019 Dec 17;51(6):1043-1058.e4
pubmed: 31810882
Blood Cancer J. 2013 Sep 13;3:e148
pubmed: 24036947
Blood. 2018 Oct 18;132(16):1689-1694
pubmed: 29986909
Blood. 2010 Jan 7;115(1):122-32
pubmed: 19789388
Mol Cancer Ther. 2021 Jul;20(7):1283-1294
pubmed: 33879556
Cell. 2019 Feb 7;176(4):775-789.e18
pubmed: 30595452
Nat Methods. 2017 Oct;14(10):979-982
pubmed: 28825705
Immunity. 2019 Jan 15;50(1):195-211.e10
pubmed: 30635237
Nat Commun. 2019 Mar 25;10(1):1065
pubmed: 30911002
Cell. 2021 Jun 24;184(13):3573-3587.e29
pubmed: 34062119
JCI Insight. 2019 Apr 23;5:
pubmed: 31013254
Cancer Cell. 2008 Feb;13(2):167-80
pubmed: 18242516
Lancet Haematol. 2019 Sep;6(9):e448-e458
pubmed: 31327689
JCI Insight. 2019 Jun 13;5:
pubmed: 31194697
Immunity. 2018 Jul 17;49(1):178-193.e7
pubmed: 29958801
F1000Res. 2020 Jan 27;9:47
pubmed: 32789006
Blood. 2018 Nov 15;132(20):2166-2178
pubmed: 30228232
Nat Immunol. 2003 Dec;4(12):1191-8
pubmed: 14625547
J Clin Invest. 2020 Apr 1;130(4):1565-1575
pubmed: 32149732
J Cell Biol. 2020 Jan 6;219(1):
pubmed: 31816057
Blood. 2003 Mar 1;101(5):2033-42
pubmed: 12393418
N Engl J Med. 2022 Jul 14;387(2):132-147
pubmed: 35660812
Blood. 1996 Oct 15;88(8):3230-9
pubmed: 8963063
J Immunother Cancer. 2022 Apr;10(4):
pubmed: 35379739
Biol Blood Marrow Transplant. 2020 Jan;26(1):7-15
pubmed: 31445183
Blood. 2018 Oct 4;132(14):1535-1544
pubmed: 30064974
Nat Med. 2018 May;24(5):563-571
pubmed: 29713085
Nat Med. 2011 Sep 18;17(10):1290-7
pubmed: 21926977
Cytometry A. 2015 Jul;87(7):636-45
pubmed: 25573116
Blood. 2018 Oct 18;132(16):1675-1688
pubmed: 30154111
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Aging Cell. 2018 Apr;17(2):
pubmed: 29349889
Sci Rep. 2019 Mar 26;9(1):5233
pubmed: 30914743
Nature. 2016 Sep 15;537(7620):417-421
pubmed: 27501248
Nature. 2019 Feb;566(7745):496-502
pubmed: 30787437
Cancer Immunol Res. 2016 Jan;4(1):61-71
pubmed: 26464015
Blood Cancer J. 2015 Mar 06;5:e285
pubmed: 25747678
Nature. 2022 May;605(7908):139-145
pubmed: 35444279
Clin Cancer Res. 2020 Sep 1;26(17):4688-4698
pubmed: 32513837
Blood. 2010 Sep 30;116(13):2286-94
pubmed: 20460501
J Clin Invest. 2019 Jan 2;129(1):106-121
pubmed: 30300141
Mol Cancer Ther. 2021 Jan;20(1):121-131
pubmed: 33277440
Cancer Immunol Res. 2020 Jul;8(7):912-925
pubmed: 32265229
Leukemia. 2016 Aug;30(8):1716-24
pubmed: 27102208
Lancet Haematol. 2019 Sep;6(9):e459-e469
pubmed: 31327687