What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia?
RNA processing
animal models
disease modeling
endonuclease
neurodegenerative disorders
patient-derived models
Journal
BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
revised:
28
11
2022
received:
03
07
2022
accepted:
30
11
2022
pubmed:
15
12
2022
medline:
20
1
2023
entrez:
14
12
2022
Statut:
ppublish
Résumé
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Identifiants
pubmed: 36517085
doi: 10.1002/bies.202200130
doi:
Substances chimiques
RNA Precursors
0
RNA, Transfer
9014-25-9
Types de publication
Review
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2200130Informations de copyright
© 2022 The Authors. BioEssays published by Wiley Periodicals LLC.
Références
Xie, Y. X., Lv, W. Q., Chen, Y. K., Hong, S., Yao, X. P., Chen, W. J., & Zhao, M. (2022). Advances in gene therapy for neurogenetic diseases: A brief review. Journal of Molecular Medicine, 100(3), 385-394. https://doi.org/10.1007/s00109-021-02167-y
Gitler, A. D., Dhillon, P., & Shorter, J. (2017). Neurodegenerative disease: Models, mechanisms, and a new hope. Disease Models & Mechanisms, 10(5), 499-502. https://doi.org/10.1242/dmm.030205
Liu, E. Y., Cali, C. P., & Lee, E. B. (2017). RNA metabolism in neurodegenerative disease. Disease Models & Mechanisms, 10(5), 509-518. https://doi.org/10.1242/dmm.028613
Schaffer, A. E., Pinkard, O., & Coller, J. M. (2019). tRNA metabolism and neurodevelopmental disorders. Annual Review of Genomics and Human Genetics, 20, 359-387. https://doi.org/10.1146/annurev-genom-083118-015334
Barth, P. G., Vrensen, G. F., Uylings, H. B., Oorthuys, J. W., & Stam, F. C. (1990). Inherited syndrome of microcephaly, dyskinesia and pontocerebellar hypoplasia: A systemic atrophy with early onset. Journal of the Neurological Sciences, 97(1), 25-42. https://doi.org/10.1016/0022-510x(90)90096-6
Barth, P. G. (1993). Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain & Development, 15(6), 411-422. https://doi.org/10.1016/0387-7604(93)90080-r
Rudnik-Schöneborn, S., Barth, P. G., & Zerres, K. (2014). Pontocerebellar hypoplasia. American Journal of Medical Genetics Part C, Seminars in Medical Genetics, 166C(2), 173-183. https://doi.org/10.1002/ajmg.c.31403
van Dijk, T., Baas, F., Barth, P. G., & Poll-The, B. T. (2018). What's new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet Journal of Rare Diseases, 13(1), 92. https://doi.org/10.1186/s13023-018-0826-2
Sanchez-Albisua, I., Frolich, S., Barth, P. G., Steinlin, M., & Krageloh-Mann, I. (2014). Natural course of pontocerebellar hypoplasia type 2A. Orphanet Journal of Rare Diseases, 9, 70. https://doi.org/10.1186/1750-1172-9-70
Budde, B. S., Namavar, Y., Barth, P. G., Poll-The, B. T., Nürnberg, G., Becker, C., van Ruissen, F., Weterman, M. A., Fluiter, K., te Beek, E. T., Aronica, E., van der Knaap, M. S., Höhne, W., Toliat, M. R., Crow, Y. J., Steinling, M., Voit, T., Roelenso, F., Brussel, W., … Baas, F. (2008). tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nature Genetics, 40(9), 1113-1118. https://doi.org/10.1038/ng.204
Cassandrini, D., Biancheri, R., Tessa, A., Di Rocco, M., Di Capua, M., Bruno, C., Denora, P. S., Sartori, S., Rossi, A., Nozza, P., Emma, F., Mezzano, P., Politi, M. R., Laverda, A. M., Zara, F., Pavone, L., Simonati, A., Leuzzi, V., Santorelli, F. M., … Bertini, E. (2010). Pontocerebellar hypoplasia: Clinical, pathologic, and genetic studies. Neurology, 75(16), 1459-1464. https://doi.org/10.1212/WNL.0b013e3181f88173
Namavar, Y., Barth, P. G., Kasher, P. R., van Ruissen, F., Brockmann, K., Bernert, G., Writzl, K., Ventura, K., Cheng, E. Y., Ferriero, D. M., Basel-Vanagaite, L., Eggens, V. R., Krägeloh-Mann, I., De Meirleir, L., King, M., Graham, J. M., Jr, von Moers, A., Knoers, N., Sztriha, L., … Poll-The, B. T (2011). Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain, 134(Pt 1), 143-156. https://doi.org/10.1093/brain/awq287
Namavar, Y., Chitayat, D., Barth, P. G., van Ruissen, F., de Wissel, M. B., Poll-The, B. T., Silver, R., & Baas, F. (2011). TSEN54 mutations cause pontocerebellar hypoplasia type 5. European Journal of Human Genetics, 19(6), 724-726. https://doi.org/10.1038/ejhg.2011.8
Namavar, Y., Barth, P. G., Poll-The, B. T., & Baas, F. (2011). Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet Journal of Rare Diseases, 6, 50. https://doi.org/10.1186/1750-1172-6-50
Bierhals, T., Korenke, G. C., Uyanik, G., & Kutsche, K. (2013). Pontocerebellar hypoplasia type 2 and TSEN2: Review of the literature and two novel mutations. European Journal of Medical Genetics, 56(6), 325-330. https://doi.org/10.1016/j.ejmg.2013.03.009
Karaca, E., Weitzer, S., Pehlivan, D., Shiraishi, H., Gogakos, T., Hanada, T., Jhangiani, S. N., Wiszniewski, W., Withers, M., Campbell, I. M., Erdin, S., Isikay, S., Franco, L. M., Gonzaga-Jauregui, C., Gambin, T., Gelowani, V., Hunter, J. V., Yesil, G., Koparir, E., … Lupski, J. R. (2014). Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell, 157(3), 636-650. https://doi.org/10.1016/j.cell.2014.02.058
Schaffer, A. E., Eggens, V. R., Caglayan, A. O., Reuter, M. S., Scott, E., Coufal, N. G., Silhavy, J. L., Xue, Y., Kayserili, H., Yasuno, K., Rosti, R. O., Abdellateef, M., Caglar, C., Kasher, P. R., Cazemier, J. L., Weterman, M. A., Cantagrel, V., Cai, N., Zweier, C., … Gleeson, J. G. (2014). CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell, 157(3), 651-663. https://doi.org/10.1016/j.cell.2014.03.049
Alazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M. A., Salih, M. A., Faqeih, E., Alhashem, A., Bashiri, F. A., Al-Owain, M., Kentab, A. Y., Sogaty, S., Al Tala, S., Temsah, M. H., Tulbah, M., … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148-161. https://doi.org/10.1016/j.celrep.2014.12.015
Breuss, M. W., Sultan, T., James, K. N., Rosti, R. O., Scott, E., Musaev, D., Furia, B., Reis, A., Sticht, H., Al-Owain, M., Alkuraya, F. S., Reuter, M. S., Abou Jamra, R., Trotta, C. R., & Gleeson, J. G. (2016). Autosomal-recessive mutations in the tRNA splicing endonuclease subunit TSEN15 cause pontocerebellar hypoplasia and progressive microcephaly. American Journal of Human Genetics, 99(3), 785. https://doi.org/10.1016/j.ajhg.2016.08.009
Rüsch, C. T., Bölsterli, B. K., Kottke, R., Steinfeld, R., & Boltshauser, E. (2020). Pontocerebellar hypoplasia: A pattern recognition approach. Cerebellum (London, England), 19(4), 569-582. https://doi.org/10.1007/s12311-020-01135-5
Patel, M. S., Becker, L. E., Toi, A., Armstrong, D. L., & Chitayat, D. (2006). Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? American Journal of Medical Genetics Part A, 140(6), 594-603. https://doi.org/10.1002/ajmg.a.31095
Ermakova, O., Orsini, T., Fruscoloni, P., Chiani, F., Gambadoro, A., Putti, S., Cirilli, M., Mezzi, A., Kaciulis, S., Pasquini, M., Raspa, M., Scavizzi, F., & Tocchini-Valentini, G. P (2021). Three-dimensional X-ray imaging of beta-galactosidase reporter activity by micro-ct: Implication for quantitative analysis of gene expression. Brain Sciences, 11(6), 746. https://doi.org/10.3390/brainsci11060746
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A. M., Pletikos, M., Meyer, K. A., Sedmak, G., Guennel, T., Shin, Y., Johnson, M. B., Krsnik, Z., Mayer, S., Fertuzinhos, S., Umlauf, S., Lisgo, S. N., Vortmeyer, A., … Sestan, N. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483-489. https://doi.org/10.1038/nature10523
Palazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: What is functional and what is junk? Frontiers in Genetics, 6, 2. https://doi.org/10.3389/fgene.2015.00002
Han, L., & Phizicky, E. M. (2018). A rationale for tRNA modification circuits in the anticodon loop. RNA, 24(10), 1277-1284. https://doi.org/10.1261/rna.067736.118
Krutyholowa, R., Zakrzewski, K., & Glatt, S. (2019). Charging the code - tRNA modification complexes. Current Opinion in Structural Biology, 55, 138-146. https://doi.org/10.1016/j.sbi.2019.03.014
Suzuki, T. (2021). The expanding world of tRNA modifications and their disease relevance. Nature Reviews Molecular Cell Biology, 22(6), 375-392. https://doi.org/10.1038/s41580-021-00342-0
Chan, P. P., & Lowe, T. M. (2016). GtRNAdb 2.0: An expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Research, 44(D1), D184-D189. https://doi.org/10.1093/nar/gkv1309
Schmidt, C. A., & Matera, A. G. (2020). tRNA introns: Presence, processing, and purpose. Wiley Interdisciplinary Reviews RNA, 11(3), e1583. https://doi.org/10.1002/wrna.1583
Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W., & Trotta, C. R. (2004). Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation. Cell, 117(3), 311-321. https://doi.org/10.1016/s0092-8674(04)00342-3
Popow, J., Englert, M., Weitzer, S., Schleiffer, A., Mierzwa, B., Mechtler, K., Trowitzsch, S., Will, C. L., Lührmann, R., Söll, D., & Martinez, J. (2011). HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science, 331(6018), 760-764. https://doi.org/10.1126/science.1197847
Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., Jaffrey, S. R., & Matera, A. G. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA, 21(9), 1554-1565. https://doi.org/10.1261/rna.052944.115
Schmidt, C. A., Giusto, J. D., Bao, A., Hopper, A. K., & Matera, A. G. (2019). Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Research, 47(12), 6452-6465. https://doi.org/10.1093/nar/gkz311
Hayne, C. K., Schmidt, C. A., Haque, M. I., Matera, A. G., & Stanley, R. E. (2020). Reconstitution of the human tRNA splicing endonuclease complex: Insight into the regulation of pre-tRNA cleavage. Nucleic Acids Research, 48(14), 7609-7622. https://doi.org/10.1093/nar/gkaa438
Sekulovski, S., Devant, P., Panizza, S., Gogakos, T., Pitiriciu, A., Heitmeier, K., Ramsay, E. P., Barth, M., Schmidt, C., Tuschl, T., Baas, F., Weitzer, S., Martinez, J., & Trowitzsch, S. (2021). Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nature Communications, 12(1), 5610. https://doi.org/10.1038/s41467-021-25870-3
Trotta, C. R., Miao, F., Arn, E. A., Stevens, S. W., Ho, C. K., Rauhut, R., & Abelson, J. N. (1997). The yeast tRNA splicing endonuclease: A tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell, 89(6), 849-858. https://doi.org/10.1016/s0092-8674(00)80270-6
Song, J., & Markley, J. L. (2007). Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. Journal of Molecular Biology, 366(1), 155-164. https://doi.org/10.1016/j.jmb.2006.11.024
Tocchini-Valentini, G. D., Fruscoloni, P., & Tocchini-Valentini, G. P. (2005). Structure, function, and evolution of the tRNA endonucleases of archaea: An example of subfunctionalization. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8933-8938. https://doi.org/10.1073/pnas.0502350102
Hirata, A., Fujishima, K., Yamagami, R., Kawamura, T., Banfield, J. F., Kanai, A., & Hori, H. (2012). X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: Insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity. Nucleic Acids Research, 40(20), 10554-10566. https://doi.org/10.1093/nar/gks826
de Vries, H., Ruegsegger, U., Hubner, W., Friedlein, A., Langen, H., & Keller, W. (2000). Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. The EMBO Journal, 19(21), 5895-5904. https://doi.org/10.1093/emboj/19.21.5895
Weitzer, S., & Martinez, J. (2007). The human RNA kinase hClp1 is active on 3' transfer RNA exons and short interfering RNAs. Nature, 447(7141), 222-226. https://doi.org/10.1038/nature05777
Dikfidan, A., Loll, B., Zeymer, C., Magler, I., Clausen, T., & Meinhart, A. (2014). RNA specificity and regulation of catalysis in the eukaryotic polynucleotide kinase clp1. Molecular Cell, 54(6), 975-986. https://doi.org/10.1016/j.molcel.2014.04.005
Cherry, P. D., White, L. K., York, K., & Hesselberth, J. R. (2018). Genetic bypass of essential RNA repair enzymes in budding yeast. RNA, 24(3), 313-323. https://doi.org/10.1261/rna.061788.117
Hanada, T., Weitzer, S., Mair, B., Bernreuther, C., Wainger, B. J., Ichida, J., Hanada, R., Orthofer, M., Cronin, S. J., Komnenovic, V., Minis, A., Sato, F., Mimata, H., Yoshimura, A., Tamir, I., Rainer, J., Kofler, R., Yaron, A., Eggan, K. C., … Penninger, J. M. (2013). CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature, 495(7442), 474-480. https://doi.org/10.1038/nature11923
Weitzer, S., Hanada, T., Penninger, J. M., & Martinez, J. (2015). CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. Wiley Interdisciplinary Reviews RNA, 6(1), 47-63. https://doi.org/10.1002/wrna.1255
Szoták-Ajtay, K., Szōke, D., Kovács, G., Andréka, J., Brenner, G. B., Giricz, Z., Penninger, J., Kahn, M. L., & Jakus, Z. (2020). Reduced prenatal pulmonary lymphatic function is observed in clp1 (K/K) embryos with impaired motor functions including fetal breathing movements in preparation of the developing lung for inflation at birth. Frontiers in Bioengineering and Biotechnology, 8, 136. https://doi.org/10.3389/fbioe.2020.00136
Pinto, P. H., Kroupova, A., Schleiffer, A., Mechtler, K., Jinek, M., Weitzer, S., & Martinez, J. (2020). ANGEL2 is a member of the CCR4 family of deadenylases with 2',3'-cyclic phosphatase activity. Science, 369(6503), 524-530. https://doi.org/10.1126/science.aba9763
Volta, V., Ceci, M., Emery, B., Bachi, A., Petfalski, E., Tollervey, D., Linder, P., Marchisio, P. C., Piatti, S., & Biffo, S. (2005). Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochemical and Biophysical Research Communications, 337(1), 89-94. https://doi.org/10.1016/j.bbrc.2005.09.012
Dhungel, N., & Hopper, A. K. (2012). Beyond tRNA cleavage: Novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing. Genes & Development, 26(5), 503-514. https://doi.org/10.1101/gad.183004.111
Tsuboi, T., Yamazaki, R., Nobuta, R., Ikeuchi, K., Makino, S., Ohtaki, A., Suzuki, Y., Yoshihisa, T., Trotta, C., & Inada, T. (2015). The tRNA splicing endonuclease complex cleaves the mitochondria-localized CBP1 mRNA. Journal of Biological Chemistry, 290(26), 16021-16030. https://doi.org/10.1074/jbc.M114.634592
Hurtig, J. E., Steiger, M. A., Nagarajan, V. K., Li, T., Chao, T. C., Tsai, K. L., & van Hoof, A. (2021). Comparative parallel analysis of RNA ends identifies mRNA substrates of a tRNA splicing endonuclease-initiated mRNA decay pathway. Proceedings of the National Academy of Sciences of the United States of America, 118(10), e2020429118. https://doi.org/10.1073/pnas.2020429118
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with alphafold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590-596. https://doi.org/10.1038/s41586-021-03828-1
Humphreys, I. R., Pei, J., Baek, M., Krishnakumar, A., Anishchenko, I., Ovchinnikov, S., Zhang, J., Ness, T. J., Banjade, S., Bagde, S. R., Stancheva, V. G., Li, X. H., Liu, K., Zheng, Z., Barrero, D. J., Roy, U., Kuper, J., Fernández, I. S., Szakal, B., … Baker, D. (2021). Computed structures of core eukaryotic protein complexes. Science, 374(6573), eabm4805. https://doi.org/10.1126/science.abm4805
Buel, G. R., & Walters, K. J. (2022). Can alphafold2 predict the impact of missense mutations on structure? Nature Structural & Molecular Biology, 29(1), 1-2. https://doi.org/10.1038/s41594-021-00714-2
Hayne, C. K., Lewis, T. A., & Stanley, R. E. (2022). Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. Wiley Interdisciplinary Reviews RNA, e1717. https://doi.org/10.1002/wrna.1717
Bandmann, O., & Burton, E. A. (2010). Genetic zebrafish models of neurodegenerative diseases. Neurobiology of Disease, 40(1), 58-65. https://doi.org/10.1016/j.nbd.2010.05.017
Kasher, P. R., Namavar, Y., van Tijn, P., Fluiter, K., Sizarov, A., Kamermans, M., Grierson, A. J., Zivkovic, D., & Baas, F. (2011). Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia. Human Molecular Genetics, 20(8), 1574-1584. https://doi.org/10.1093/hmg/ddr034
Parisi, M. A., & Dobyns, W. B. (2003). Human malformations of the midbrain and hindbrain: Review and proposed classification scheme. Molecular Genetics and Metabolism, 80(1-2), 36-53. https://doi.org/10.1016/j.ymgme.2003.08.010
Wurst, W., & Bally-Cuif, L. (2001). Neural plate patterning: Upstream and downstream of the isthmic organizer. Nature Reviews Neuroscience, 2(2), 99-108. https://doi.org/10.1038/35053516
Koster, R. W., & Fraser, S. E. (2001). Direct imaging of in vivo neuronal migration in the developing cerebellum. Current Biology, 11(23), 1858-1863. https://doi.org/10.1016/s0960-9822(01)00585-1
Gibbs, H. C., Chang-Gonzalez, A., Hwang, W., Yeh, A. T., & Lekven, A. C. (2017). Midbrain-Hindbrain boundary morphogenesis: At the intersection of wnt and fgf signaling. Frontiers in Neuroanatomy, 11, 64. https://doi.org/10.3389/fnana.2017.00064
Edvardson, S., Shaag, A., Kolesnikova, O., Gomori, J. M., Tarassov, I., Einbinder, T., Saada, A., & Elpeleg, O. (2007). Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. American Journal of Human Genetics, 81(4), 857-862. https://doi.org/10.1086/521227
Schmidt, C. A., Min, L. Y., McVay, M. H., Giusto, J. D., Brown, J. C., Salzler, H. R., & Matera, A. G. (2022). Mutations in Drosophila tRNA processing factors cause phenotypes similar to pontocerebellar hypoplasia. Biology Open, 11(3), bio058928. https://doi.org/10.1242/bio.058928
Battini, R., D'Arrigo, S., Cassandrini, D., Guzzetta, A., Fiorillo, C., Pantaleoni, C., Romano, A., Alfei, E., Cioni, G., & Santorelli, F. M. (2014). Novel mutations in TSEN54 in pontocerebellar hypoplasia type 2. Journal of Child Neurology, 29(4), 520-525. https://doi.org/10.1177/0883073812470002
Ermakova, O., Orsini, T., Gambadoro, A., Chiani, F., & Tocchini-Valentini, G. P. (2018). Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: Application for phenotyping analysis of early embryonic lethality in mutant animals. Mammalian Genome, 29(3-4), 245-259. https://doi.org/10.1007/s00335-017-9723-6
Zillmann, M., Gorovsky, M. A., & Phizicky, E. M. (1991). Conserved mechanism of tRNA splicing in eukaryotes. Molecular and Cellular Biology, 11(11), 5410-5416. https://doi.org/10.1128/mcb.11.11.5410-5416.1991
Minvielle-Sebastia, L., Preker, P. J., Wiederkehr, T., Strahm, Y., & Keller, W. (1997). The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3'-end formation. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 7897-7902. https://doi.org/10.1073/pnas.94.15.7897
Holbein, S., Scola, S., Loll, B., Dichtl, B. S., Hubner, W., Meinhart, A., & Dichtl, B. (2011). The P-loop domain of yeast clp1 mediates interactions between CF IA and CPF factors in pre-mRNA 3' end formation. PLoS ONE, 6(12), e29139. https://doi.org/10.1371/journal.pone.0029139
Ghazy, M. A., Gordon, J. M., Lee, S. D., Singh, B. N., Bohm, A., Hampsey, M., & Moore, C. (2012). The interaction of pcf11 and clp1 is needed for mRNA 3'-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Research, 40(3), 1214-1225. https://doi.org/10.1093/nar/gkr801
Haddad, R., Maurice, F., Viphakone, N., Voisinet-Hakil, F., Fribourg, S., & Minvielle-Sebastia, L. (2012). An essential role for clp1 in assembly of polyadenylation complex CF IA and pol II transcription termination. Nucleic Acids Research, 40(3), 1226-1239. https://doi.org/10.1093/nar/gkr800
Monaghan, C. E., Adamson, S. I., Kapur, M., Chuang, J. H., & Ackerman, S. L. (2021). The clp1 R140H mutation alters tRNA metabolism and mRNA 3' processing in mouse models of pontocerebellar hypoplasia. Proceedings of the National Academy of Sciences of the United States of America, 118(39), e2110730118. https://doi.org/10.1073/pnas.2110730118
Srikanth, P., & Young-Pearse, T. L. (2014). Stem cells on the brain: Modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. Journal of Neurogenetics, 28(1-2), 5-29. https://doi.org/10.3109/01677063.2014.881358
Shi, Y., Inoue, H., Wu, J. C., & Yamanaka, S. (2017). Induced pluripotent stem cell technology: A decade of progress. Nature Reviews Drug Discovery, 16(2), 115-130. https://doi.org/10.1038/nrd.2016.245
Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., Xu, W., Yang, N., Danko, T., Chen, L., Wernig, M., & Südho, T. C (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785-798. https://doi.org/10.1016/j.neuron.2013.05.029
Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H., Shipman, S. L., Byrne, S. M., Sanjana, N. E., Murn, J., Li, Y., Li, S., Stadler, M., Weiss, R., & Church, G. M (2014). Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 10, 760. doi: 10.15252/msb.20145508
Chanda, S., Ang, C. E., Davila, J., Pak, C., Mall, M., Lee, Q. Y., Ahlenius, H., Jung, S. W., Südhof, T. C., & Wernig, M. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3(2), 282-296. https://doi.org/10.1016/j.stemcr.2014.05.020
Yang, N., Chanda, S., Marro, S., Ng, Y. H., Janas, J. A., Haag, D., Ang, C. E., Tang, Y., Flores, Q., Mall, M., Wapinski, O., Li, M., Ahlenius, H., Rubenstein, J. L., Chang, H. Y., Buylla, A. A., Südhof, T. C., & Wernig, M. (2017). Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 14(6), 621-628. https://doi.org/10.1038/nmeth.4291
Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
Sauter, E. J., Kutsche, L. K., Klapper, S. D., & Busskamp, V. (2019). Induced neurons for the study of neurodegenerative and neurodevelopmental disorders. Methods in Molecular Biology, 1942, 101-121. https://doi.org/10.1007/978-1-4939-9080-1_9
Wilson, B., & Dutta, A. (2022). Function and therapeutic implications of tRNA derived small RNAs. Frontiers in Molecular Biosciences, 9, 888424. https://doi.org/10.3389/fmolb.2022.888424
Defelipe, J. (2011). The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Frontiers in Neuroanatomy, 5, 29. https://doi.org/10.3389/fnana.2011.00029
Hill, R. S., & Walsh, C. A. (2005). Molecular insights into human brain evolution. Nature, 437(7055), 64-67. https://doi.org/10.1038/nature04103
Zeng, H., Shen, E. H., Hohmann, J. G., Oh, S. W., Bernard, A., Royall, J. J., Glattfelder, K. J., Sunkin, S. M., Morris, J. A., Guillozet-Bongaarts, A. L., Smith, K. A., Ebbert, A. J., Swanson, B., Kuan, L., Page, D. T., Overly, C. C., Lein, E. S., Hawrylycz, M. J., Hof, P. R., … Jones, A. R (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149(2), 483-496. https://doi.org/10.1016/j.cell.2012.02.052
Bakken, T. E., Miller, J. A., Ding, S. L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., Dalley, R. A., Royall, J. J., Lemon, T., Shapouri, S., Aiona, K., Arnold, J., Bennett, J. L., Bertagnolli, D., Bickley, K., Boe, A., Brouner, K., Butler, S., … Lein, E. S. (2016). A comprehensive transcriptional map of primate brain development. Nature, 535(7612), 367-375. https://doi.org/10.1038/nature18637
Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A., Barkan, E. R., Graybuck, L. T., Szafer, A., Dalley, R. A., Royall, J. J., Lemon, T., Shapouri, S., Aiona, K., Arnold, J., Bennett, J. L., Bertagnolli, D., Bickley, K., Boe, A., Brouner, K., Butler, S., … Lein, E. S (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature, 573(7772), 61-68. https://doi.org/10.1038/s41586-019-1506-7
Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., & Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373-379. https://doi.org/10.1038/nature12517
Lancaster, M. A., & Huch, M. (2019). Disease modelling in human organoids. Disease Models & Mechanisms, 12(7), dmm039347. https://doi.org/10.1242/dmm.039347
Chiaradia, I., & Lancaster, M. A. (2020). Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience, 23(12), 1496-1508. https://doi.org/10.1038/s41593-020-00730-3
Khakipoor, S., Crouch, E. E., & Mayer, S. (2020). Human organoids to model the developing human neocortex in health and disease. Brain Research, 1742, 146803. https://doi.org/10.1016/j.brainres.2020.146803
Lancaster, M. A. (2021). Brain organoids: A new frontier of human neuroscience research. Seminars in Cell & Developmental Biology, 111, 1-3. https://doi.org/10.1016/j.semcdb.2020.10.011
Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., & Sasai, Y. (2015). Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports, 10(4), 537-550. https://doi.org/10.1016/j.celrep.2014.12.051
Kagermeier, T., Hauser, S., Sarieva, K., Laugwitz, L., Groeschel, S., Janzarik, W., Yentür, Z., Becker, B., Schöls, L., Krägeloh-Mann, I., & Mayer, S. (2022). Human organoid model of PCH2a recapitulates brain region-specific pathology. bioRxiv, 2022.2010.2013.512020. https://doi.org/10.1101/2022.10.13.512020
Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: Organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 18(5), 285-298. https://doi.org/10.1038/nrm.2017.7
Khakipoor, S., Drömer, M. A., Cozetto, D. A., & Mayer, S. (2019). Single-cell RNA-sequencing in neuroscience. Neuroforum, 25(4), 251-258. https://doi.org/10.1515/nf-2019-0021
Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal, N., Rowitch, D. H., & Kriegstein, A. R. (2019). Single-cell genomics identifies cell type-specific molecular changes in autism. Science, 364(6441), 685-689. https://doi.org/10.1126/science.aav8130
Kebschull, J. M., Richman, E. B., Ringach, N., Friedmann, D., Albarran, E., Kolluru, S. S., Jones, R. C., Allen, W. E., Wang, Y., Cho, S. W., Zhou, H., Ding, J. B., Chang, H. Y., Deisseroth, K., Quake, S. R., & Luo, L. (2020). Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 370(6523), eabd5059. https://doi.org/10.1126/science.abd5059
Hull, C., & Regehr, W. G. (2022). The cerebellar cortex. Annual Review of Neuroscience, 45, 151-175. https://doi.org/10.1146/annurev-neuro-091421-125115
Ishimura, R., Nagy, G., Dotu, I., Zhou, H., Yang, X. L., Schimmel, P., Senju, S., Nishimura, Y., Chuang, J. H., & Ackerman, S. L. (2014). RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science, 345(6195), 455-459. https://doi.org/10.1126/science.1249749
Kapur, M., Ganguly, A., Nagy, G., Adamson, S. I., Chuang, J. H., Frankel, W. N., & Ackerman, S. L. (2020). Expression of the neuronal tRNA n-Tr20 regulates synaptic transmission and seizure susceptibility. Neuron, 108(1), 193-208.e9. https://doi.org/10.1016/j.neuron.2020.07.023
Kapur, M., & Ackerman, S. L. (2018). mRNA translation gone awry: Translation fidelity and neurological disease. Trends in Genetics, 34(3), 218-231. https://doi.org/10.1016/j.tig.2017.12.007
Kapur, M., Monaghan, C. E., & Ackerman, S. L. (2017). Regulation of mRNA translation in neurons - A matter of life and death. Neuron, 96(3), 616-637. https://doi.org/10.1016/j.neuron.2017.09.057
Li, Z., Schonberg, R., Guidugli, L., Johnson, A. K., Arnovitz, S., Yang, S., Scafidi, J., Summar, M. L., Vezina, G., Das, S., Chapman, K., & del Gaudio, D. (2015). A novel mutation in the promoter of RARS2 causes pontocerebellar hypoplasia in two siblings. Journal of Human Genetics, 60(7), 363-369. https://doi.org/10.1038/jhg.2015.31
Rankin, J., Brown, R., Dobyns, W. B., Harington, J., Patel, J., Quinn, M., & Brown, G. (2010). Pontocerebellar hypoplasia type 6: A british case with PEHO-like features. American Journal of Medical Genetics Part A, 152A(8), 2079-2084. https://doi.org/10.1002/ajmg.a.33531
Renbaum, P., Kellerman, E., Jaron, R., Geiger, D., Segel, R., Lee, M., King, M. C., & Levy-Lahad, E. (2009). Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. American Journal of Human Genetics, 85(2), 281-289. https://doi.org/10.1016/j.ajhg.2009.07.006
Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., Hosseini, M., Behjati, F., Haas, S., Jamali, P., Zecha, A., Mohseni, M., Püttmann, L., Vahid, L. N., Jensen, C., Moheb, L. A., Bienek, M., Larti, F., Mueller, I., … Ropers, H. H (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 57-63. https://doi.org/10.1038/nature10423
van Dijk, T., Ferdinandusse, S., Ruiter, J. P. N., Alders, M., Mathijssen, I. B., Parboosingh, J. S., Innes, A. M., Meijers-Heijboer, H., Poll-The, B. T., Bernier, F. P., Wanders, R. J. A., Lamont, R. E., & Baas, F. (2018). Biallelic loss of function variants in COASY cause prenatal onset pontocerebellar hypoplasia, microcephaly, and arthrogryposis. European Journal of Human Genetics, 26(12), 1752-1758. https://doi.org/10.1038/s41431-018-0233-0
Ucuncu, E., Rajamani, K., Wilson, M. S. C., Medina-Cano, D., Altin, N., David, P., Barcia, G., Lefort, N., Banal, C., Vasilache-Dangles, M. T., Pitelet, G., Lorino, E., Rabasse, N., Bieth, E., Zaki, M. S., Topcu, M., Sonmez, F. M., Musaev, D., Stanley, V., … Cantagrel, V. (2020). MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in pontocerebellar hypoplasia. Nature Communications, 11(1), 6087. https://doi.org/10.1038/s41467-020-19919-y
Appelhof, B., Wagner, M., Hoefele, J., Heinze, A., Roser, T., Koch-Hogrebe, M., Roosendaal, S. D., Dehghani, M., Mehrjardi, M. Y. V., Torti, E., Houlden, H., Maroofian, R., Rajabi, F., Sticht, H., Baas, F., Wieczorek, D., & Jamra, R. A. (2021). Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. European Journal of Human Genetics, 29(3), 411-421. https://doi.org/10.1038/s41431-020-00749-x
Ivanova, E. L., Mau-Them, F. T., Riazuddin, S., Kahrizi, K., Laugel, V., Schaefer, E., de Saint Martin, A., Runge, K., Iqbal, Z., Spitz, M. A., Laura, M., Drouot, N., Gérard, B., Deleuze, J. F., de Brouwer, A. P. M., Razzaq, A., Dollfus, H., Assir, M. Z., Nitchké, P., … Chelly, J. (2017). Homozygous truncating variants in TBC1D23 cause pontocerebellar hypoplasia and alter cortical development. American Journal of Human Genetics, 101(3), 428-440. https://doi.org/10.1016/j.ajhg.2017.07.010
Marin-Valencia, I., Gerondopoulos, A., Zaki, M. S., Ben-Omran, T., Almureikhi, M., Demir, E., Guemez-Gamboa, A., Gregor, A., Issa, M. Y., Appelhof, B., Roosing, S., Musaev, D., Rosti, B., Wirth, S., Stanley, V., Baas, F., Barr, F. A., & Gleeson, J. G. (2017). Homozygous mutations in TBC1D23 lead to a non-degenerative form of pontocerebellar hypoplasia. American Journal of Human Genetics, 101(3), 441-450. https://doi.org/10.1016/j.ajhg.2017.07.015
Mochida, G. H., Ganesh, V. S., de Michelena, M. I., Dias, H., Atabay, K. D., Kathrein, K. L., Huang, H. T., Hill, R. S., Felie, J. M., Rakiec, D., Gleason, D., Hill, A. D., Malik, A. N., Barry, B. J., Partlow, J. N., Tan, W. H., Glader, L. J., Barkovich, A. J., Dobyns, W. B., … Walsh, C. A. (2012). CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nature Genetics, 44(11), 1260-1264. https://doi.org/10.1038/ng.2425
Abrams, A. J., Hufnagel, R. B., Rebelo, A., Zanna, C., Patel, N., Gonzalez, M. A., Campeanu, I. J., Griffin, L. B., Groenewald, S., Strickland, A. V., Tao, F., Speziani, F., Abreu, L., Schüle, R., Caporali, L., La Morgia, C., Maresca, A., Liguori, R., Lodi, R., … Dallman, J. E. (2015). Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nature Genetics, 47(8), 926-932. https://doi.org/10.1038/ng.3354
Wan, J., Steffen, J., Yourshaw, M., Mamsa, H., Andersen, E., Rudnik-Schoneborn, S., Pope, K., Howell, K. B., McLean, C. A., Kornberg, A. J., Joseph, J., Lockhart, P. J., Zerres, K., Ryan, M. M., Nelson, S. F., Koehler, C. M., & Jen, J. C. (2016). Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain, 139(11), 2877-2890. https://doi.org/10.1093/brain/aww212
Janer, A., Prudent, J., Paupe, V., Fahiminiya, S., Majewski, J., Sgarioto, N., Des Rosiers, C., Forest, A., Lin, Z. Y., Gingras, A. C., Mitchell, G., McBride, H. M., & Shoubridge, E. A. (2016). SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for leigh syndrome. EMBO Molecular Medicine, 8(9), 1019-1038. doi: 10.15252/emmm.201506159
Braunisch, M. C., Gallwitz, H., Abicht, A., Diebold, I., Holinski-Feder, E., Van Maldergem, L., Lammens, M., Kovács-Nagy, R., Alhaddad, B., Strom, T. M., Meitinger, T., Senderek, J., Rudnik-Schöneborn, S., & Haack, T. B. (2018). Extension of the phenotype of biallelic loss-of-function mutations in SLC25A46 to the severe form of pontocerebellar hypoplasia type I. Clinical Genetics, 93(2), 255-265. https://doi.org/10.1111/cge.13084
Chai, G., Webb, A., Li, C., Antaki, D., Lee, S., Breuss, M. W., Lang, N., Stanley, V., Anzenberg, P., Yang, X., Marshall, T., Gaffney, P., Wierenga, K. J., Chung, B. H., Tsang, M. H., Pais, L. S., Lovgren, A. K., VanNoy, G. E., Rehm, H. L., … Gleeson, J. G (2021). Mutations in spliceosomal genes PPIL1 and PRP17 cause neurodegenerative pontocerebellar hypoplasia with microcephaly. Neuron, 109(2), 241-256.e9. https://doi.org/10.1016/j.neuron.2020.10.035
Akizu, N., Cantagrel, V., Schroth, J., Cai, N., Vaux, K., McCloskey, D., Naviaux, R. K., Van Vleet, J., Fenstermaker, A. G., Silhavy, J. L., Scheliga, J. S., Toyama, K., Morisaki, H., Sonmez, F. M., Celep, F., Oraby, A., Zaki, M. S., Al-Baradie, R., Faqeih, E. A., … Gleeson, J. G. (2013). AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell, 154(3), 505-517. https://doi.org/10.1016/j.cell.2013.07.005
Marsh, A. P., Lukic, V., Pope, K., Bromhead, C., Tankard, R., Ryan, M. M., Yiu, E. M., Sim, J. C., Delatycki, M. B., Amor, D. J., McGillivray, G., Sherr, E. H., Bahlo, M., Leventer, R. J., & Lockhart, P. J (2015). Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss. Neurology Genetics, 1(2), e16. https://doi.org/10.1212/NXG.0000000000000014
Ahmed, M. Y., Chioza, B. A., Rajab, A., Schmitz-Abe, K., Al-Khayat, A., Al-Turki, S., Baple, E. L., Patton, M. A., Al-Memar, A. Y., Hurles, M. E., Partlow, J. N., Hill, R. S., Evrony, G. D., Servattalab, S., Markianos, K., Walsh, C. A., Crosby, A. H., … Mochida, G. H (2015). Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology, 84(17), 1745-1750. https://doi.org/10.1212/WNL.0000000000001523
Feinstein, M., Flusser, H., Lerman-Sagie, T., Ben-Zeev, B., Lev, D., Agamy, O., Cohen, I., Kadir, R., Sivan, S., Leshinsky-Silver, E., Markus, B., & Birk, O. S. (2014). VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). Journal of Medical Genetics, 51(5), 303-308. https://doi.org/10.1136/jmedgenet-2013-101823
Gershlick, D. C., Ishida, M., Jones, J. R., Bellomo, A., Bonifacino, J. S., & Everman, D. B. (2019). A neurodevelopmental disorder caused by mutations in the VPS51 subunit of the GARP and EARP complexes. Human Molecular Genetics, 28(9), 1548-1560. https://doi.org/10.1093/hmg/ddy423
Uwineza, A., Caberg, J. H., Hitayezu, J., Wenric, S., Mutesa, L., Vial, Y., Drunat, S., Passemard, S., Verloes, A., El Ghouzzi, V., & Bours, V. (2019). VPS51 biallelic variants cause microcephaly with brain malformations: A confirmatory report. European Journal of Medical Genetics, 62(8), 103704. https://doi.org/10.1016/j.ejmg.2019.103704
Wan, J., Yourshaw, M., Mamsa, H., Rudnik-Schoneborn, S., Menezes, M. P., Hong, J. E., Leong, D. W., Senderek, J., Salman, M. S., Chitayat, D., Seeman, P., von Moers, A., Graul-Neumann, L., Kornberg, A. J., Castro-Gago, M., Sobrido, M. J., Sanefuji, M., Shieh, P. B., … Jen, J. C (2012). Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nature Genetics, 44(6), 704-708. https://doi.org/10.1038/ng.2254
Biancheri, R., Cassandrini, D., Pinto, F., Trovato, R., Di Rocco, M., Mirabelli-Badenier, M., Pedemonte, M., Panicucci, C., Trucks, H., Sander, T., Zara, F., Rossi, A., Striano, P., Minetti, C., & Santorelli, F. M (2013). EXOSC3 mutations in isolated cerebellar hypoplasia and spinal anterior horn involvement. Journal of Neurology, 260(7), 1866-1870. https://doi.org/10.1007/s00415-013-6896-0
Eggens, V. R., Barth, P. G., Niermeijer, J. M., Berg, J. N., Darin, N., Dixit, A., Fluss, J., Foulds, N., Fowler, D., Hortobágyi, T., Jacques, T., King, M. D., Makrythanasis, P., Máté, A., Nicoll, J. A., O'Rourke, D., Price, S., Williams, A. N., Wilson, L., … Baas, F. (2014). EXOSC3 mutations in pontocerebellar hypoplasia type 1: Novel mutations and genotype-phenotype correlations. Orphanet Journal of Rare Diseases, 9, 23. https://doi.org/10.1186/1750-1172-9-23
Halevy, A., Lerer, I., Cohen, R., Kornreich, L., Shuper, A., Gamliel, M., Zimerman, B. E., Korabi, I., Meiner, V., Straussberg, R., & Lossos, A. (2014). Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia. Journal of Neurology, 261(11), 2165-2169. https://doi.org/10.1007/s00415-014-7457-x
Rudnik-Schöneborn, S., Senderek, J., Jen, J. C., Houge, G., Seeman, P., Puchmajerová, A., Graul-Neumann, L., Seidel, U., Korinthenberg, R., Kirschner, J., Seeger, J., Ryan, M. M., Muntoni, F., Steinlin, M., Sztriha, L., Colomer, J., Hübner, C., Brockmann, K., Van Maldergem, L., … Zerres, K. (2013). Pontocerebellar hypoplasia type 1: Clinical spectrum and relevance of EXOSC3 mutations. Neurology, 80(5), 438-446. https://doi.org/10.1212/WNL.0b013e31827f0f66
Schwabova, J., Brozkova, D. S., Petrak, B., Mojzisova, M., Pavlickova, K., Haberlova, J., Mrazkova, L., Hedvicakova, P., Hornofova, L., Kaluzova, M., Fencl, F., Krutova, M., Zamecnik, J., & Seeman, P. (2013). Homozygous EXOSC3 mutation c.92G→C, p.G31A is a founder mutation causing severe pontocerebellar hypoplasia type 1 among the czech roma. Journal of Neurogenetics, 27(4), 163-169. https://doi.org/10.3109/01677063.2013.814651
Zanni, G., Scotton, C., Passarelli, C., Fang, M., Barresi, S., Dallapiccola, B., Wu, B., Gualandi, F., Ferlini, A., Bertini, E., & Wei, W. (2013). Exome sequencing in a family with intellectual disability, early onset spasticity, and cerebellar atrophy detects a novel mutation in EXOSC3. Neurogenetics, 14(3-4), 247-250. https://doi.org/10.1007/s10048-013-0371-z
Boczonadi, V., Muller, J. S., Pyle, A., Munkley, J., Dor, T., Quartararo, J., Ferrero, I., Karcagi, V., Giunta, M., Polvikoski, T., Birchall, D., Princzinger, A., Cinnamon, Y., Lützkendorf, S., Piko, H., Reza, M., Florez, L., Santibanez-Koref, M., Griffin, H., … Horvath, R. (2014). EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nature Communications, 5, 4287. https://doi.org/10.1038/ncomms5287
Bizzari, S., Hamzeh, A. R., Mohamed, M., Al-Ali, M. T., & Bastaki, F. (2020). Expanded PCH1D phenotype linked to EXOSC9 mutation. European Journal of Medical Genetics, 63(1), 103622. https://doi.org/10.1016/j.ejmg.2019.01.012
Burns, D. T., Donkervoort, S., Muller, J. S., Knierim, E., Bharucha-Goebel, D., Faqeih, E. A., Bell, S. K., AlFaifi, A. Y., Monies, D., Millan, F., Retterer, K., Dyack, S., MacKay, S., Morales-Gonzalez, S., Giunta, M., Munro, B., Hudson, G., Scavina, M., Baker, L., … Bonnemann, C. G. (2018). Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. American Journal of Human Genetics, 102(5), 858-873. https://doi.org/10.1016/j.ajhg.2018.03.011
Sakamoto, M., Iwama, K., Sekiguchi, F., Mashimo, H., Kumada, S., Ishigaki, K., Okamoto, N., Behnam, M., Ghadami, M., Koshimizu, E., Miyatake, S., Mitsuhashi, S., Mizuguchi, T., Takata, A., Saitsu, H., Miyake, N., & Matsumoto, N. (2021). Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. Journal of Human Genetics, 66(4), 401-407. https://doi.org/10.1038/s10038-020-00853-2
Somashekar, P. H., Kaur, P., Stephen, J., Guleria, V. S., Kadavigere, R., Girisha, K. M., Bielas, S., Upadhyai, P., & Shukla, A. (2021). Bi-allelic missense variant, p.Ser35Leu in EXOSC1 is associated with pontocerebellar hypoplasia. Clinical Genetics, 99(4), 594-600. https://doi.org/10.1111/cge.13928
Agamy, O., Ben Zeev, B., Lev, D., Marcus, B., Fine, D., Su, D., Narkis, G., Ofir, R., Hoffmann, C., Leshinsky-Silver, E., Flusser, H., Sivan, S., Söll, D., Lerman-Sagie, T., & Birk, O. S. (2010). Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. American Journal of Human Genetics, 87(4), 538-544. https://doi.org/10.1016/j.ajhg.2010.09.007
Makrythanasis, P., Nelis, M., Santoni, F. A., Guipponi, M., Vannier, A., Béna, F., Gimelli, S., Stathaki, E., Temtamy, S., Mégarbané, A., Masri, A., Aglan, M. S., Zaki, M. S., Bottani, A., Fokstuen, S., Gwanmesia, L., Aliferis, K., Bustamante Eduardo, M., Stamoulis, G., … & Antonarakis, S. E. (2014). Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Human Mutation, 35(10), 1203-1210. https://doi.org/10.1002/humu.22617
Lardelli, R. M., Schaffer, A. E., Eggens, V. R., Zaki, M. S., Grainger, S., Sathe, S., Van Nostrand, E. L., Schlachetzki, Z., Rosti, B., Akizu, N., Scott, E., Silhavy, J. L., Heckman, L. D., Rosti, R. O., Dikoglu, E., Gregor, A., Guemez-Gamboa, A., Musaev, D., Mande, R., … Gleeson, J. G. (2017). Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 49(3), 457-464. https://doi.org/10.1038/ng.3762