Empagliflozin protects mice against diet-induced obesity, insulin resistance and hepatic steatosis.
Empagliflozin
Insulin resistance
Obesity
SGLT2 inhibition
Skeletal muscle mitochondria
Steatosis
Western-type diet
Journal
Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
05
09
2022
accepted:
31
10
2022
pubmed:
17
12
2022
medline:
25
2
2023
entrez:
16
12
2022
Statut:
ppublish
Résumé
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used in the treatment of type 2 diabetes, heart failure and chronic kidney disease. Their role in the prevention of diet-induced metabolic deteriorations, such as obesity, insulin resistance and fatty liver disease, has not been defined yet. In this study we set out to test whether empagliflozin prevents weight gain and metabolic dysfunction in a mouse model of diet-induced obesity and insulin resistance. C57Bl/6 mice were fed a western-type diet supplemented with empagliflozin (WDE) or without empagliflozin (WD) for 10 weeks. A standard control diet (CD) without or with empagliflozin (CDE) was used to control for diet-specific effects. Metabolic phenotyping included assessment of body weight, food and water intake, body composition, hepatic energy metabolism, skeletal muscle mitochondria and measurement of insulin sensitivity using hyperinsulinaemic-euglycaemic clamps. Mice fed the WD were overweight, hyperglycaemic, hyperinsulinaemic and insulin resistant after 10 weeks. Supplementation of the WD with empagliflozin prevented these metabolic alterations. While water intake was significantly increased by empagliflozin supplementation, food intake was similar in WDE- and WD-fed mice. Adipose tissue depots measured by MRI were significantly smaller in WDE-fed mice than in WD-fed mice. Additionally, empagliflozin supplementation prevented significant steatosis found in WD-fed mice. Accordingly, hepatic insulin signalling was deteriorated in WD-fed mice but not in WDE-fed mice. Empagliflozin supplementation positively affected size and morphology of mitochondria in skeletal muscle in both CD- and WD-fed mice. Empagliflozin protects mice from diet-induced weight gain, insulin resistance and hepatic steatosis in a preventative setting and improves muscle mitochondrial morphology independent of the type of diet.
Identifiants
pubmed: 36525084
doi: 10.1007/s00125-022-05851-x
pii: 10.1007/s00125-022-05851-x
pmc: PMC9947060
doi:
Substances chimiques
empagliflozin
HDC1R2M35U
Insulin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
754-767Informations de copyright
© 2022. The Author(s).
Références
J Biol Chem. 1995 Dec 1;270(48):28989-94
pubmed: 7499431
Hepatology. 2005 Jun;41(6):1313-21
pubmed: 15915461
Biochem Biophys Res Commun. 2018 Jan 1;495(1):582-586
pubmed: 29128353
Sci Rep. 2019 Jul 8;9(1):9887
pubmed: 31285506
Dig Dis Sci. 2016 May;61(5):1365-74
pubmed: 27052013
BMJ Open Diabetes Res Care. 2019 Oct 25;7(1):e000783
pubmed: 31749970
Biochem J. 2009 Sep 25;423(2):253-64
pubmed: 19650766
EBioMedicine. 2017 Jun;20:137-149
pubmed: 28579299
Int J Environ Res Public Health. 2019 Aug 17;16(16):
pubmed: 31426529
Diabetes Metab. 2019 Jun;45(3):213-223
pubmed: 30708071
Eur J Pharmacol. 2020 Jan 5;866:172810
pubmed: 31738936
Diabetes Metab Rev. 1988 Aug;4(5):517-40
pubmed: 3061759
Diabetes. 2002 Oct;51(10):2944-50
pubmed: 12351431
Diabetes Care. 2015 Sep;38(9):1730-5
pubmed: 26180105
Am J Physiol Renal Physiol. 2014 Jan;306(2):F188-93
pubmed: 24226519
Lancet. 2022 Jan 22;399(10322):394-405
pubmed: 34600604
N Engl J Med. 2020 Oct 8;383(15):1413-1424
pubmed: 32865377
Am J Physiol Endocrinol Metab. 2017 Dec 1;313(6):E721-E730
pubmed: 28743757
Am J Physiol Renal Physiol. 2014 Jan;306(2):F194-204
pubmed: 24226524
N Engl J Med. 2017 Jul 6;377(1):13-27
pubmed: 28604169
N Engl J Med. 2014 Sep 18;371(12):1131-41
pubmed: 25229917
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Rev Cardiol. 2020 Dec;17(12):761-772
pubmed: 32665641
Annu Rev Nutr. 2016 Jul 17;36:337-67
pubmed: 27146012
N Engl J Med. 2015 Nov 26;373(22):2117-28
pubmed: 26378978
Int J Mol Sci. 2022 Mar 13;23(6):
pubmed: 35328527
Cell Rep. 2013 Apr 25;3(4):1020-7
pubmed: 23583180
Diabetes Care. 2018 Aug;41(8):1801-1808
pubmed: 29895557
Int J Mol Sci. 2021 Jan 15;22(2):
pubmed: 33467546
Clin Sci (Lond). 2019 Dec 12;133(23):2415-2430
pubmed: 31769484
J Nutr Biochem. 2017 Nov;49:22-29
pubmed: 28863366
Muscle Nerve. 1982 Sep;5(7):538-53
pubmed: 6292711
Clin Exp Hepatol. 2020 Dec;6(4):339-346
pubmed: 33511282
Metabolism. 2012 Feb;61(2):175-85
pubmed: 21816445
Nat Rev Endocrinol. 2011 Sep 13;8(2):92-103
pubmed: 21912398
N Engl J Med. 2017 Jan 19;376(3):254-266
pubmed: 28099824
Nutr Diabetes. 2017 Jun 19;7(6):e282
pubmed: 28628125
Cardiovasc Diabetol. 2019 Nov 28;18(1):165
pubmed: 31779619
Diabetes Care. 2020 Feb;43(2):298-305
pubmed: 31540903
Nature. 2019 Dec;576(7785):51-60
pubmed: 31802013
Nutr Metab (Lond). 2014 Feb 12;11(1):10
pubmed: 24520982
Obesity (Silver Spring). 2017 Aug;25(8):1360-1368
pubmed: 28605159
Hepatol Commun. 2020 Feb 05;4(4):504-517
pubmed: 32258946
Diabetes. 2014 Nov;63(11):3856-67
pubmed: 24917575
Biochem Biophys Rep. 2019 Apr 19;18:100640
pubmed: 31032431
Sci Rep. 2020 Nov 12;10(1):19686
pubmed: 33184414