Low-energy shock wave therapy ameliorates ischemic-induced overactive bladder in a rat model.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 12 2022
Historique:
received: 24 05 2022
accepted: 13 12 2022
entrez: 19 12 2022
pubmed: 20 12 2022
medline: 22 12 2022
Statut: epublish

Résumé

This study was to evaluate whether Low-energy shock wave therapy (LESW) improves ischemic-induced overactive bladder in rats and investigate its therapeutic mechanisms. Sixteen-week-old male Sprague-Dawley rats were divided into three groups: arterial injury (AI), AI with LESW (AI-SW), and control groups. LESW was irradiated in AI-SW during 20-23 weeks of age. At 24 weeks of age, conscious cystometry was performed (each n = 8). The voiding interval was shortened in AI (mean ± SEM: 5.1 ± 0.8 min) than in control (17.3 ± 3.0 min), whereas significant improvements were observed in AI-SW (14.9 ± 3.3 min). The bladder blood flow was significantly increased in AI-SW than in AI. Microarray analysis revealed higher gene expression of soluble guanylate cyclase (sGC) α1 and β1 in the bladder of AI-SW compared to AI. Protein expression of sGCα1 and sGCβ1 was higher in AI-SW and control groups than in AI. Cyclic guanosine monophosphate (cGMP) was elevated in AI-SW. As an early genetic response, vascular endothelial growth factor and CD31 were highly expressed 24 h after the first LESW. Suburothelial thinning observed in AI was restored in AI-SW. Activation of sGC-cGMP may play a therapeutic role of LESW in the functional recovery of the bladder.

Identifiants

pubmed: 36536004
doi: 10.1038/s41598-022-26292-x
pii: 10.1038/s41598-022-26292-x
pmc: PMC9763424
doi:

Substances chimiques

Vascular Endothelial Growth Factor A 0
Guanylate Cyclase EC 4.6.1.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

21960

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Coyne, K. S. et al. Risk factors and comorbid conditions associated with lower urinary tract symptoms: EpiLUTS. BJU Int. 103, 24–32 (2009).
doi: 10.1111/j.1464-410X.2009.08438.x pubmed: 19302499
Kimura, S., Sato, T., Orikasa, K., Nakagawa, H. & Ito, A. Night-time urinary frequency is increased after the great east japan earthquake along with seasonal variation: A five-year longitudinal study in Kesennuma City. Tohoku J. Exp. Med. 252, 329–337 (2020).
doi: 10.1620/tjem.252.329 pubmed: 33268602
Kimura, S. et al. Neurogenic lower urinary tract dysfunction in association with severity of degenerative spinal diseases: Short-term outcomes of decompression surgery. LUTS Low. Urin. Tract Symptoms 14, 1–12. https://doi.org/10.1111/luts.12444 (2022).
doi: 10.1111/luts.12444
Anderson, K.-E., Nomiya, M. & Yamaguchi, O. Chronic pelvic ischemia: Contribution to the pathogenesis of lower urinary tract symptoms (LUTS): A new target for pharmacological treatment?. LUTS Low. Urin. Tract Symptoms 7, 1–8 (2015).
doi: 10.1111/luts.12084
Nomiya, M. et al. The effect of atherosclerosis-induced chronic bladder ischemia on bladder function in the rat. Neurourol. Urodyn. 31, 195–200 (2012).
doi: 10.1002/nau.21073 pubmed: 21905085
Nomiya, M. et al. Increased bladder activity is associated with elevated oxidative stress markers and proinflammatory cytokines in a rat model of atherosclerosis-induced chronic bladder ischemia. Neurourol. Urodyn. 31, 185–189 (2012).
doi: 10.1002/nau.21191 pubmed: 21953769
Sunagawa, M. et al. Urinary bladder mucosal responses to ischemia. World J. Urol. 33, 275–280 (2015).
doi: 10.1007/s00345-014-1298-1 pubmed: 24728265
Nomiya, M. et al. Prophylactic effect of tadalafil on bladder function in a rat model of chronic bladder ischemia. J. Urol. 189, 754–761 (2013).
doi: 10.1016/j.juro.2012.07.141 pubmed: 22982422
Koyama, J. et al. Penile blood pressure is useful to identify candidates for tadalafil treatment in patients with lower urinary tract symptoms. BJU Int. 123, 124–129 (2019).
doi: 10.1111/bju.14456 pubmed: 29917304
Wang, H.-J., Cheng, J.-H. & Chuang, Y.-C. Potential applications of low-energy shock waves in functional urology. Int. J. Urol. 24, 573–581 (2017).
doi: 10.1111/iju.13403 pubmed: 28697536
Kikuchi, Y. et al. Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ. J. 74, 589–591 (2010).
doi: 10.1253/circj.CJ-09-1028 pubmed: 20134096
Serizawa, F. et al. Extracorporeal shock wave therapy improves the walking ability of patients with peripheral artery disease and intermittent claudication. Circ. J. 76, 1486–1493 (2012).
doi: 10.1253/circj.CJ-11-1216 pubmed: 22447002
Al-Abbad, H. et al. The effects of shockwave therapy on musculoskeletal conditions based on changes in imaging: A systematic review and meta-analysis with meta-regression. BMC Musculoskelet. Disord. 21, 275 (2020).
doi: 10.1186/s12891-020-03270-w pubmed: 32345281 pmcid: 7189454
Vardi, Y., Appel, B., Jacob, G., Massarwi, O. & Gruenwald, I. Can low-intensity extracorporeal shockwave therapy improve erectile function? A 6-month follow-up pilot study in patients with organic erectile dysfunction. Eur. Urol. 58, 243–248 (2010).
doi: 10.1016/j.eururo.2010.04.004 pubmed: 20451317
Lee, Y.-C. et al. Low-intensity extracorporeal shock wave therapy ameliorates the overactive bladder: A prospective pilot study. Biomed. Res. Int. 2020, 1–9 (2020).
Mónica, F. Z. & Antunes, E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat. Rev. Urol. 15, 42–54 (2018).
doi: 10.1038/nrurol.2017.181 pubmed: 29133940
Ignarro, L. J. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: A unique transduction mechanism for transcellular signaling. Pharmacol. Toxicol. 67, 1–7 (1990).
doi: 10.1111/j.1600-0773.1990.tb00772.x pubmed: 1975691
Chung, B. H., Choi, S. K. & Chang, K. C. Effects of nitric oxide on detrusor relaxation. J. Urol. 155, 2090–2093 (1996).
doi: 10.1016/S0022-5347(01)66115-9 pubmed: 8618342
Persson, K. et al. Functional characteristics of urinary tract smooth muscles in mice lacking cGMP protein kinase type I. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, 1112–1120 (2000).
doi: 10.1152/ajpregu.2000.279.3.R1112
Aizawa, N., Igawa, Y., Nishizawa, O. & Wyndaele, J.-J. Effects of nitric oxide on the primary bladder afferent activities of the rat with and without intravesical acrolein treatment. Eur. Urol. 59, 264–271 (2011).
doi: 10.1016/j.eururo.2010.10.035 pubmed: 21067861
Minagawa, T., Aizawa, N., Igawa, Y. & Wyndaele, J.-J. Inhibitory effects of phosphodiesterase 5 inhibitor, tadalafil, on mechanosensitive bladder afferent nerve activities of the rat, and on acrolein-induced hyperactivity of these nerves. BJU Int. 110, E259–E266 (2012).
doi: 10.1111/j.1464-410X.2012.11255.x pubmed: 22591258
Behr-Roussel, D. et al. Vardenafil decreases bladder afferent nerve activity in unanesthetized, decerebrate, spinal cord-injured rats. Eur. Urol. 59, 272–279 (2011).
doi: 10.1016/j.eururo.2010.10.037 pubmed: 21036463
Kanai, A. et al. Mechanisms of action of botulinum neurotoxins, β 3 -adrenergic receptor agonists, and PDE5 inhibitors in modulating detrusor function in overactive bladders: ICI-RS 2011. Neurourol. Urodyn. 31, 300–308 (2012).
doi: 10.1002/nau.21246 pubmed: 22275187
Leiria, L. O. et al. The Soluble guanylyl cyclase activator BAY 60–2770 ameliorates overactive bladder in obese mice. J. Urol. 191, 539–547 (2014).
doi: 10.1016/j.juro.2013.09.020 pubmed: 24050894
Nishida, T. et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in Vivo. Circulation 110, 3055–3061 (2004).
doi: 10.1161/01.CIR.0000148849.51177.97 pubmed: 15520304
Yoshida, M. et al. Low-energy extracorporeal shock wave ameliorates ischemic acute kidney injury in rats. Clin. Exp. Nephrol. 23, 597–605 (2019).
doi: 10.1007/s10157-019-01689-7 pubmed: 30617840
Ujiie, N. et al. Low-energy extracorporeal shock wave therapy for a model of liver cirrhosis ameliorates liver fibrosis and liver function. Sci. Rep. 10, 1–7 (2020).
doi: 10.1038/s41598-020-58369-w
Yahata, K. et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J. Neurosurg. Spine 25, 745–755 (2016).
doi: 10.3171/2016.4.SPINE15923 pubmed: 27367940
Mariotto, S. et al. Extracorporeal shock waves: From lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 12, 89–96 (2005).
doi: 10.1016/j.niox.2004.12.005 pubmed: 15740982
Hatanaka, K. et al. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: Roles of mechanotransduction. Am. J. Physiol. Physiol. 311, C378–C385 (2016).
doi: 10.1152/ajpcell.00152.2016
Yang, J., Choi, H., Niu, W. & Azadzoi, K. M. Cellular stress and molecular responses in bladder Ischemia. Int. J. Mol. Sci. 22, 11862 (2021).
doi: 10.3390/ijms222111862 pubmed: 34769293 pmcid: 8584445
Kanai, A. & Andersson, K.-E. Bladder afferent signaling: Recent findings. J. Urol. 183, 1288–1295 (2010).
doi: 10.1016/j.juro.2009.12.060 pubmed: 20171668 pmcid: 3686308
Andersson, K. & McCloskey, K. D. Lamina propria: The functional center of the bladder?. Neurourol. Urodyn. 33, 9–16 (2014).
doi: 10.1002/nau.22465 pubmed: 23847015
Gabella, G. Lamina propria: The connective tissue of rat urinary bladder mucosa. Neurourol. Urodyn. 38, 2093–2103 (2019).
doi: 10.1002/nau.24085 pubmed: 31338895
Gillespie, J. I., Markerink-Van Ittersum, M. & De Vente, J. Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: Evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res. 325, 325–332 (2006).
doi: 10.1007/s00441-005-0146-4 pubmed: 16598501
Wang, H. S. et al. Low-intensity extracorporeal shockwave therapy ameliorates diabetic underactive bladder in streptozotocin-induced diabetic rats. BJU Int. 122, 490–500 (2018).
doi: 10.1111/bju.14216 pubmed: 29603534 pmcid: 6158099
Li, H. et al. Treatment with low-energy shock wave alleviates pain in an animal model of uroplakin 3A-induced autoimmune interstitial cystitis/painful bladder syndrome. Investig. Clin. Urol. 60, 359–366 (2019).
doi: 10.4111/icu.2019.60.5.359 pubmed: 31501798 pmcid: 6722408
Wang, H.-J., Lee, W.-C., Tyagi, P., Huang, C.-C. & Chuang, Y.-C. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model. Neurourol. Urodyn. 36, 1440–1447 (2017).
doi: 10.1002/nau.23141 pubmed: 28035695
Fujii, S. et al. Phosphodiesterase type 5 inhibitor attenuates chronic ischemia-induced prostatic hyperplasia in a rat model. Prostate 79, 536–543 (2019).
doi: 10.1002/pros.23759 pubmed: 30593704

Auteurs

Shingo Kimura (S)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Naoki Kawamorita (N)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan. kawamoritan@gmail.com.

Yoku Kikuchi (Y)

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.

Tomohiko Shindo (T)

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.

Yuichi Ishizuka (Y)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Yohei Satake (Y)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Takuma Sato (T)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Hideaki Izumi (H)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Shinichi Yamashita (S)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Satoshi Yasuda (S)

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.

Hiroaki Shimokawa (H)

Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
Graduate School, International University of Health and Welfare, Narita, Japan.

Akihiro Ito (A)

Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH