Bifurcation phenomena in Taylor-Couette flow in a very short annulus with radial through-flow.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 Dec 2022
Historique:
received: 16 05 2022
accepted: 19 12 2022
entrez: 21 12 2022
pubmed: 22 12 2022
medline: 22 12 2022
Statut: epublish

Résumé

In this study, the non-linear dynamics of Taylor-Couette flow in a very small-aspect-ratio wide-gap annulus in a counter-rotating regime under the influence of radial through-flow are investigated by solving its full three-dimensional Navier-Stokes equations. Depending on the intensity of the radial flow, either an axisymmetric (pure [Formula: see text] mode) pulsating flow structure or an axisymmetric axially propagating vortex will appear subcritical, i.e. below the centrifugal instability threshold of the circular Couette flow. We show that the propagating vortices can be stably existed in two separate parameter regions, which feature different underlying dynamics. Although in one regime, the flow appears only as a limit cycle solution upon which saddle-node-invariant-circle bifurcation occurs, but in the other regime, it shows more complex dynamics with richer Hopf bifurcation sequences. That is, by presence of incommensurate frequencies, it can be appeared as 1-, 2- and 3-torus solutions, which is known as the Ruelle-Takens-Newhouse route to chaos. Therefore, the observed bifurcation scenario is the Ruelle-Takens-Newhouse route to chaos and the period doubling bifurcation, which exhibit rich and complex dynamics.

Identifiants

pubmed: 36543906
doi: 10.1038/s41598-022-26645-6
pii: 10.1038/s41598-022-26645-6
pmc: PMC9772330
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22113

Subventions

Organisme : Spanish Government grant
ID : PID2019-105162RB-I00
Organisme : National Research Foundation of Korea
ID : NRF-2019R1A2B5B01070579

Informations de copyright

© 2022. The Author(s).

Références

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 2):036322
pubmed: 20365869
Phys Rev Lett. 2005 Feb 25;94(7):074501
pubmed: 15783820
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 2):046316
pubmed: 23214686
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056309
pubmed: 15244934
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Dec;48(6):4444-4454
pubmed: 9961126
Sci Rep. 2017 Jan 06;7:40012
pubmed: 28059129
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 2):066313
pubmed: 20866528
Phys Rev Lett. 2007 Jan 26;98(4):044502
pubmed: 17358779
Artif Organs. 1989 Feb;13(1):43-51
pubmed: 2712736
Materials (Basel). 2019 Dec 04;12(24):
pubmed: 31817153

Auteurs

Sebastian Altmeyer (S)

Castelldefels School of Telecom and Aerospace Engineering, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain.

M Sankar (M)

Department of General Requirement, University of Technology and Applied Sciences, 516, Ibri, Sultanate of Oman.

Younghae Do (Y)

Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu, 41566, Republic of Korea. yhdo@knu.ac.kr.

Classifications MeSH