Divergent roles of herbivory in eutrophying forests.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 12 2022
22 12 2022
Historique:
received:
07
06
2022
accepted:
25
11
2022
entrez:
22
12
2022
pubmed:
23
12
2022
medline:
27
12
2022
Statut:
epublish
Résumé
Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.
Identifiants
pubmed: 36550094
doi: 10.1038/s41467-022-35282-6
pii: 10.1038/s41467-022-35282-6
pmc: PMC9780218
doi:
Substances chimiques
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7837Informations de copyright
© 2022. The Author(s).
Références
Glob Chang Biol. 2014 Feb;20(2):429-40
pubmed: 24132996
Ecol Evol. 2021 Mar 24;11(10):5017-5024
pubmed: 34025988
Science. 2022 Jan 21;375(6578):266-267
pubmed: 35050668
PLoS Biol. 2018 Dec 4;16(12):e2006841
pubmed: 30513079
Ecol Lett. 2022 Feb;25(2):466-482
pubmed: 34866301
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4162-7
pubmed: 24591633
Conserv Biol. 2011 Aug;25(4):680-7
pubmed: 21771076
Ecol Appl. 2011 Mar;21(2):439-51
pubmed: 21563575
Ecology. 2018 Nov;99(11):2626
pubmed: 29989146
Ecology. 2010 Jan;91(1):93-105
pubmed: 20380200
Glob Chang Biol. 2018 Feb;24(2):e485-e495
pubmed: 28892277
Ecology. 2018 Apr;99(4):822-831
pubmed: 29603733
Nature. 2022 Nov;611(7935):301-305
pubmed: 36323777
Nat Commun. 2017 Sep 4;8(1):419
pubmed: 28871154
Environ Pollut. 2016 Jan;208(Pt B):890-7
pubmed: 26476695
Nature. 1989 Sep 14;341(6238):142-4
pubmed: 2779651
PLoS One. 2019 May 21;14(5):e0217166
pubmed: 31112579
Environ Pollut. 2018 Nov;242(Pt B):1787-1799
pubmed: 30115529
New Phytol. 2008;180(3):571-586
pubmed: 18771472
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4086-91
pubmed: 27035943
Ecol Appl. 2022 Apr;32(3):e2531
pubmed: 35019181
Proc Biol Sci. 2009 Oct 7;276(1672):3539-44
pubmed: 19625318
Glob Chang Biol. 2015 Oct;21(10):3726-37
pubmed: 26212787
Ecol Appl. 2010 Jan;20(1):30-59
pubmed: 20349829
Nat Ecol Evol. 2018 Dec;2(12):1925-1932
pubmed: 30374174
Nat Ecol Evol. 2020 Jun;4(6):802-808
pubmed: 32284580
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18561-5
pubmed: 24167287
Environ Pollut. 2019 Jan;244:980-994
pubmed: 30469293
New Phytol. 2016 Dec;212(4):871-887
pubmed: 27787948
Glob Chang Biol. 2018 Apr;24(4):1722-1740
pubmed: 29271579
F1000Res. 2013 Sep 18;2:191
pubmed: 24555091
BMC Ecol. 2020 Jul 29;20(1):43
pubmed: 32727542
Ecol Appl. 2019 Jun;29(4):e01874
pubmed: 30761647
Appl Veg Sci. 2017 Apr;20(2):282-292
pubmed: 29249901
Glob Chang Biol. 2020 Dec;26(12):6959-6973
pubmed: 32902073
Nat Commun. 2020 Nov 27;11(1):6036
pubmed: 33247130
Nat Plants. 2015 Aug 17;1:15110
pubmed: 27250675
Science. 2009 May 1;324(5927):636-8
pubmed: 19407202