Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies.

anchylosing spondylitis anti-rheumatic treatment cell cholesterol efflux high density lipoprotein lipoproteins low density lipoprotein macrophages psoriatic arthritis spondyloarthropathies

Journal

Journal of clinical medicine
ISSN: 2077-0383
Titre abrégé: J Clin Med
Pays: Switzerland
ID NLM: 101606588

Informations de publication

Date de publication:
09 Dec 2022
Historique:
received: 12 10 2022
revised: 05 12 2022
accepted: 07 12 2022
entrez: 23 12 2022
pubmed: 24 12 2022
medline: 24 12 2022
Statut: epublish

Résumé

Spondyloarthropathies (SpA) are associated with increased cardiovascular risk. Among possible mechanisms is the dysfunction of serum lipoproteins in regulating cell cholesterol homeostasis. Cholesterol efflux capacity (CEC)-the atheroprotective ability of HDL (high density lipoproteins) to accept cholesterol from macrophages-might predict cardiovascular disease independently of HDL-cholesterol levels. We aimed at evaluating modifications of CEC and of the atherogenic cholesterol loading capacity (CLC) of serum lipoproteins in psoriatic arthritis (PsA) and ankylosing spondylitis (AS) following anti-rheumatic treatment. A total of 62 SpA patients (37 PsA and 25 AS) were evaluated before and after treatment with tumor necrosis factor inhibitor and/or methotrexate. CEC and CLC were measured by radioisotopic and fluorometric techniques, respectively. Endothelial function was assessed by finger plethysmography (Endopat). In the whole SpA group, total and HDL-cholesterol increased after treatment, while lipoprotein(a) decreased and CLC was unchanged. Treatment was associated with increased Scavenger Receptor class B type I (SR-BI)-mediated CEC in the AS group. SR-BI- and ABCG1-mediated CEC were negatively associated with inflammatory parameters and positively related to coffee consumption. SR-BI CEC and CLC were positively and negatively associated with endothelial function, respectively. Our pilot study suggests that anti-rheumatic treatment is associated with favorable modulation of lipoprotein quality and function in SpA, particularly in AS, in spite of the induced increase in total cholesterol levels. If confirmed in a larger population, this might represent an atheroprotective benefit beyond what is reflected by conventional serum lipid profile.

Identifiants

pubmed: 36555946
pii: jcm11247330
doi: 10.3390/jcm11247330
pmc: PMC9780876
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : The Norwegian Women's Public Health Association
ID : 14902

Références

J Clin Endocrinol Metab. 2017 Nov 1;102(11):4117-4123
pubmed: 28938424
Trends Cell Biol. 2016 Apr;26(4):249-261
pubmed: 26791157
Arthritis Res Ther. 2016 Nov 10;18(1):261
pubmed: 27832797
Atherosclerosis. 2020 Jun;302:36-42
pubmed: 32438197
Arthritis Res Ther. 2017 Oct 17;19(1):232
pubmed: 29041979
J Lipid Res. 2015 Aug;56(8):1519-30
pubmed: 25995210
Cytokine. 2012 Jun;58(3):424-30
pubmed: 22436638
Circ Res. 2009 May 22;104(10):1142-50
pubmed: 19372466
J Clin Endocrinol Metab. 2019 Oct 1;104(10):4793-4803
pubmed: 31220285
Clin Exp Rheumatol. 2013 Jul-Aug;31(4):612-20
pubmed: 23406817
Arterioscler Thromb Vasc Biol. 2014 Jan;34(1):17-25
pubmed: 24202308
N Engl J Med. 2011 Jan 13;364(2):127-35
pubmed: 21226578
J Lipid Res. 1981 Feb;22(2):339-58
pubmed: 6787159
BMJ. 2014 Jul 18;349:g4379
pubmed: 25038074
J Lipid Res. 2012 May;53(5):984-989
pubmed: 22414482
J Lipid Res. 2006 Mar;47(3):605-13
pubmed: 16327021
Arterioscler Thromb Vasc Biol. 2006 Mar;26(3):541-7
pubmed: 16410457
Circ Res. 2010 Mar 5;106(4):779-87
pubmed: 20075335
FEBS Lett. 2005 Dec 5;579(29):6537-42
pubmed: 16289478
Best Pract Res Clin Rheumatol. 2018 Jun;32(3):369-389
pubmed: 31171309
J Am Heart Assoc. 2015 Jan 30;4(2):
pubmed: 25637346
Arthritis Rheumatol. 2015 May;67(5):1155-64
pubmed: 25605003
Adv Drug Deliv Rev. 2020;159:94-119
pubmed: 33080259
J Biol Chem. 2005 Oct 28;280(43):35890-5
pubmed: 16120612
J Clin Invest. 1999 Mar;103(6):897-905
pubmed: 10079111
N Engl J Med. 2014 Dec 18;371(25):2383-93
pubmed: 25404125
Curr Med Chem. 2019;26(9):1693-1700
pubmed: 29737246
J Lipid Res. 2012 Aug;53(8):1618-24
pubmed: 22649206
Rheumatology (Oxford). 2020 Oct 1;59(10):2847-2856
pubmed: 32065639
Ann Rheum Dis. 2014 Mar;73(3):609-15
pubmed: 23562986
Nat Rev Cardiol. 2016 Jan;13(1):48-60
pubmed: 26323267
Expert Rev Clin Immunol. 2021 Apr;17(4):355-374
pubmed: 33673792
J Rheumatol. 2015 Sep;42(9):1652-60
pubmed: 26233507
Cell Mol Bioeng. 2017 Feb;10(1):30-40
pubmed: 28138348
Curr Pharm Biotechnol. 2012 Feb;13(2):292-302
pubmed: 21470124
Ann Rheum Dis. 2012 Jul;71(7):1157-62
pubmed: 22267330
Nat Rev Immunol. 2015 Feb;15(2):104-16
pubmed: 25614320
Eur Heart J. 2015 Oct 14;36(39):2662-5
pubmed: 26188212
Circ Cardiovasc Imaging. 2018 Jun;11(6):e007394
pubmed: 29776990
J Biol Chem. 2000 Apr 14;275(15):11278-83
pubmed: 10753938
Horm Metab Res. 2019 Mar;51(3):200-209
pubmed: 30695794
Metabolism. 2014 May;63(5):727-34
pubmed: 24636347
Arthritis Rheumatol. 2021 Mar;73(3):459-471
pubmed: 32909675
Nutr Metab Cardiovasc Dis. 2014 Jul;24(7):777-83
pubmed: 24680225
J Am Coll Cardiol. 2016 May 31;67(21):2480-7
pubmed: 27230043
Rev Recent Clin Trials. 2018;13(3):199-209
pubmed: 29542417
J Lipid Res. 2004 Jul;45(7):1169-96
pubmed: 15102878
Semin Arthritis Rheum. 2016 Aug;46(1):71-80
pubmed: 27079757
J Atheroscler Thromb. 2017 Jun 1;24(6):552-559
pubmed: 28428482
Lancet. 2012 Aug 11;380(9841):572-80
pubmed: 22607825
Curr Opin Lipidol. 2012 Jun;23(3):182-189
pubmed: 22488423
J Lipid Res. 2017 Oct;58(10):2051-2060
pubmed: 28830907
Nat Med. 2001 Jul;7(7):853-7
pubmed: 11433352
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):128-140
pubmed: 33232200
J Physiol. 2003 Feb 15;547(Pt 1):21-33
pubmed: 12562964
Nat Rev Rheumatol. 2013 Sep;9(9):513-23
pubmed: 23774906
Front Cardiovasc Med. 2021 Jul 19;8:681327
pubmed: 34350216
J Am Coll Cardiol. 2018 Jan 16;71(2):177-192
pubmed: 29325642
Metabolism. 2013 Apr;62(4):479-91
pubmed: 23040268
J Diabetes Complications. 2020 Dec;34(12):107693
pubmed: 32900591
Biomedicines. 2020 Nov 21;8(11):
pubmed: 33233452
Br J Pharmacol. 2013 Jun;169(3):493-511
pubmed: 23488589
Biosci Rep. 2019 Apr 2;39(4):
pubmed: 30867253
Heart. 2017 May;103(10):766-773
pubmed: 27852695
Arthritis Rheum. 2007 Mar;56(3):831-9
pubmed: 17328057
J Biol Chem. 2014 Aug 29;289(35):24020-9
pubmed: 25074931
Joint Bone Spine. 2019 Mar;86(2):159-163
pubmed: 29787813

Auteurs

Ingrid Hokstad (I)

Lillehammer Hospital for Rheumatic Diseases, 2609 Lillehammer, Norway.
Institute of Clinical Sciences, University of Oslo, 0318 Oslo, Norway.

Daniela Greco (D)

Department of Food and Drug, University of Parma, 43124 Parma, Italy.

Gia Deyab (G)

Department of Laboratory Medicine, Vestre Viken Trust, 3004 Drammen, Norway.

Morten Wang Fagerland (MW)

Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, 0424 Oslo, Norway.

Stefan Agewall (S)

Institute of Clinical Sciences, University of Oslo, 0318 Oslo, Norway.
Department of Medicine, Oslo University Hospital Ullevål, 0424 Oslo, Norway.

Gunnbjørg Hjeltnes (G)

Department of Internal Medicine, Innlandet Hospital Trust, 2819 Lillehammer, Norway.

Francesca Zimetti (F)

Department of Food and Drug, University of Parma, 43124 Parma, Italy.

Franco Bernini (F)

Department of Food and Drug, University of Parma, 43124 Parma, Italy.

Nicoletta Ronda (N)

Department of Food and Drug, University of Parma, 43124 Parma, Italy.

Ivana Hollan (I)

Beitostølen Health and Sport Centre, 2953 Beitostølen, Norway.
Institute for Health Sciences, The Norwegian University of Science and Technology, 7034 Gjøvik, Norway.

Classifications MeSH