Transcriptome Profiling in Swine Macrophages Infected with African Swine Fever Virus (ASFV) Uncovers the Complex and Close Relationship with Host.
African swine fever virus (ASFV)
NF-κB signaling pathway
RNA-seq
inflammation
innate immunity
Journal
Pathogens (Basel, Switzerland)
ISSN: 2076-0817
Titre abrégé: Pathogens
Pays: Switzerland
ID NLM: 101596317
Informations de publication
Date de publication:
24 Nov 2022
24 Nov 2022
Historique:
received:
30
08
2022
revised:
04
11
2022
accepted:
19
11
2022
entrez:
23
12
2022
pubmed:
24
12
2022
medline:
24
12
2022
Statut:
epublish
Résumé
African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells. In this study, RNA-seq technology was used to analyze the transcriptomic change in PAMs infected with ASFV at different time points (0 h, 12 h, 24 h). As a result, a total of 2748, 1570, and 560 genes were enriched in group V12 h vs. MOCK, V24 h vs. MOCK, and V24 h vs. V12 h, respectively. These DEGs (differentially expressed genes) in each group were mainly concentrated in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to innate immunization and inflammation, including the NF-κB signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, IL-17 signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Furthermore, the increased levels of IL-1β, TNF-α, IKKβ, CXCL2, and TRAF2 and decreased level of IκBα were validated through the qPCR method. These results suggested that ASFV infection can activate the NF-κB signaling pathway in the early stage. In general, this study provides a theoretical basis for further understanding the pathogenesis and immune escape mechanism of ASFV.
Identifiants
pubmed: 36558746
pii: pathogens11121411
doi: 10.3390/pathogens11121411
pmc: PMC9788513
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Guangdong Major Project of Basic and Applied Basic Research
ID : No.2020B0301030007
Organisme : the Science and Technology Program of Guangzhou, China
ID : No. 202206010161
Organisme : the Key Research Projects of Universities in Guangdong Province
ID : No.2019KZDXM026
Organisme : the Quality and Efficiency Improvement Project of South China Agricultural University
ID : No.C18
Références
J Virol. 2015 Feb;89(4):2358-66
pubmed: 25505078
J Virol. 1996 Dec;70(12):8527-33
pubmed: 8970976
PLoS Pathog. 2021 Jul 26;17(7):e1009733
pubmed: 34310655
J Virol. 2022 Feb 23;96(4):e0191921
pubmed: 34908441
Viruses. 2022 Jan 31;14(2):
pubmed: 35215890
Vet Microbiol. 2013 Mar 23;162(2-4):937-943
pubmed: 23265239
Cell Metab. 2014 Apr 1;19(4):694-701
pubmed: 24703700
Virus Res. 2019 Jun;266:25-33
pubmed: 30959069
Nat Commun. 2015 Nov 12;6:8873
pubmed: 26561297
Theriogenology. 2017 Jan 1;87:339-348
pubmed: 27751602
Autophagy. 2021 Sep;17(9):2305-2324
pubmed: 32924761
Virol Sin. 2021 Apr;36(2):196-206
pubmed: 33830435
mBio. 2019 Mar 12;10(2):
pubmed: 30862747
J Virol. 2022 May 11;96(9):e0195721
pubmed: 35412346
J Hematol Oncol. 2015 Mar 08;8:22
pubmed: 25887760
Curr Mol Med. 2013 Feb;13(2):305-16
pubmed: 23228131
Viruses. 2022 Feb 15;14(2):
pubmed: 35215987
Nat Biotechnol. 2016 Jan;34(1):20-2
pubmed: 26641533
Front Microbiol. 2022 Jul 06;13:958307
pubmed: 35875580
PLoS Pathog. 2020 May 13;16(5):e1008543
pubmed: 32401783
Front Oncol. 2015 Apr 07;5:75
pubmed: 25905039
Virulence. 2021 Dec;12(1):130-149
pubmed: 33380286
Immunology. 1997 Jul;91(3):444-9
pubmed: 9301535
Front Vet Sci. 2021 Jan 22;7:601641
pubmed: 33553280
J Virol. 2022 Mar 9;96(5):e0193921
pubmed: 35019713
Virol J. 2021 Aug 19;18(1):170
pubmed: 34412678
Front Immunol. 2021 Dec 15;12:808545
pubmed: 34975923
Virology. 2019 May;531:183-191
pubmed: 30927711
Arch Virol. 2013 Nov;158(11):2285-95
pubmed: 23736979
Cell. 2017 Jan 12;168(1-2):37-57
pubmed: 28086098
EFSA J. 2018 Nov 29;16(11):e05494
pubmed: 32625771
J Virol. 2021 Aug 25;95(18):e0082421
pubmed: 34190598
Virology. 2017 Jan 15;501:102-106
pubmed: 27898335
Genes Brain Behav. 2006;5 Suppl 1:23-31
pubmed: 16417614
Viruses. 2019 Aug 27;11(9):
pubmed: 31461953
Inflamm Res. 2017 Mar;66(3):209-216
pubmed: 27752708
Vet Microbiol. 2021 Oct;261:109211
pubmed: 34481273
Science. 2021 Jan 22;371(6527):405-410
pubmed: 33479154
Biochem Biophys Res Commun. 2018 Nov 30;506(3):437-443
pubmed: 30348523
Virus Res. 2013 Apr;173(1):140-9
pubmed: 23376310
Virus Res. 2013 Apr;173(1):87-100
pubmed: 23165138
Exp Ther Med. 2021 Jul;22(1):710
pubmed: 34007319
Vet Immunol Immunopathol. 2002 Nov;90(1-2):11-22
pubmed: 12406651
Virol Sin. 2021 Dec;36(6):1532-1542
pubmed: 34519916
Front Immunol. 2019 Apr 09;10:705
pubmed: 31024544
Cell Host Microbe. 2010 Nov 18;8(5):422-32
pubmed: 21075353
Vaccines (Basel). 2020 Sep 15;8(3):
pubmed: 32942741
Wiley Interdiscip Rev RNA. 2017 Jan;8(1):
pubmed: 27198714
Viruses. 2017 May 10;9(5):
pubmed: 28489063
Prev Vet Med. 2020 Feb;175:104861
pubmed: 31810030
Neurobiol Dis. 2014 Dec;72 Pt A:3-12
pubmed: 25173806
J Virol. 2022 Sep 14;96(17):e0094422
pubmed: 35972295