Shine, Shine, Ruthenium Caged Drug.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
03 2023
Historique:
received: 29 11 2022
accepted: 17 12 2022
medline: 31 3 2023
pubmed: 24 12 2022
entrez: 23 12 2022
Statut: ppublish

Résumé

This is a highlight on the paper by Bonnet et al.: A Lock-and-Kill Anticancer Photoactivated Chemotherapy Agent. which constitutes an important step toward establishing photoactivated chemotherapy (PACT) as a widespread tool to treat different health issues, specially tumors. PACT can be a useful technique to deliver already tested drugs, where the effect of the desired molecule is directed only to its target after light irradiation, even in the cases in which it is difficult to achieve a precise delivery in the desired organ or tissue. Ruthenium-polipyridyl caged-compounds are near ideal devices to deliver a drug in that precise fashion, albeit they usually fail in revealing their actual location due to their weak light emission properties. The mentioned work introduces a simple and clever idea: the use of a covalently linked fluorophore to map the caged-compounds in-vivo distribution prior to the eventual irradiation to activate the chemotherapy.

Identifiants

pubmed: 36562218
doi: 10.1111/php.13772
doi:

Substances chimiques

Pharmaceutical Preparations 0
Antineoplastic Agents 0
Ruthenium 7UI0TKC3U5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

860-862

Informations de copyright

© 2022 American Society for Photobiology.

Références

Dobzhansky, T. (1946) Genetics of natural populations. XIII. Recombination and variability In populations of drosophila Pseudoobscura. Genetics 31, 269-290.
Ferrari, E., C. Lucca and M. Foiani (2010) A lethal combination for cancer cells: Synthetic lethality screenings for drug discovery. Eur. J. Cancer 46, 2889-2895.
Chan, D. A. and A. J. Giaccia (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov. 10, 351-364.
Chan, D. A., P. D. Sutphin, P. Nguyen, S. Turcotte, E. W. Lai, A. Banh, G. E. Reynolds, J.-T. Chi, J. Wu, D. E. Solow-Cordero, M. Bonnet, J. U. Flanagan, D. M. Bouley, E. E. Graves, W. A. Denny, M. P. Hay and A. J. Giaccia (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3(94), 94ra70.
Flight, M. H. (2011) A sweet blow for cancer cells. Nat. Rev. Drug Discov. 10(10), 734.
Motzer, R. J. and P. Russo (2000) Systemic therapy for renal cell carcinoma. J. Urol. 163, 408-417.
Farrer, N. J., L. Salassa and P. J. Sadler (2009) Photoactivated chemotherapy (PACT): The potential of excited-state d-block metals in medicine. Dalton Trans. 48, 10690-10701.
Filevich, O. and R. Etchenique (2022) Photochemical biosignaling with ruthenium complexes. In Advances in Inorganic Chemistry, Vol. 80 (Edited by P. Ford and R. Van Eldik), pp. 321-354. Academic Press, Cambridge, MA, USA.
Pinnick, D. V. and B. Durham (1984) Photosubstitution reactions of Ru(bpy)2XYn+ complexes. Inorg. Chem. 23, 1440-1445.
Mari, C., V. Pierroz, S. Ferrari and G. Gasser (2015) (2015) combination of Ru(II) complexes and light: New frontiers in cancer therapy. Chem. Sci. 6, 2660-2686.
Chen, Y., L. Bai, P. Zhang, H. Zhao and Q. Zhou (2021) The development of Ru(II)-based photoactivated chemotherapy agents. Molecules 26, 5679-5699.
Papish, E. T. and O. E. Oladipupo (2022) Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Curr. Op. Chem. Biol. 68, 102143.
Rohrabaugh, T. N., Jr., K. A. Collins, C. Xue, J. K. White, J. J. Kodanko and C. Turro (2018) New Ru(ii) complex for dual photochemotherapy: Release of cathepsin K inhibitor and 1O2 production. Dalton Trans. 47, 11851-11858.
Toupin, N., S. J. Steinke, S. Nadella, A. Li, T. N. Rohrabaugh Jr., E. R. Samuels, C. Turro, I. F. Sevrioukova and J. J. Kodanko (2021) Photosensitive Ru(II) complexes as inhibitors of the major human drug metabolizing enzyme CYP3A4. J. Am. Chem. Soc. 143(24), 9191-9205.
Havrylyuk, D., D. K. Heidary, L. Nease, S. Parkin and E. C. Glazer (2017) Photochemical properties and structure-activity relationships of RuII complexes with Pyridylbenzazole ligands as promising anticancer agents. Eur J Inorg Chem. 12, 1687-1694.
Bahreman, A., J.-A. Cuello-Garibo and S. Bonnet (2014) Yellow-light sensitization of a ligand photosubstitution reaction in a ruthenium polypyridyl complex covalently bound to a rhodamine dye. Dalton Trans. 43, 4494-4505.

Auteurs

Roberto Etchenique (R)

Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Ciudad Universitaria, Buenos Aires, Argentina.

Oscar Filevich (O)

Laboratorio de Neuroingeniería, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martín, Provincia de Buenos Aires, Argentina.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH