Physiopathological changes of ferritin mRNA density and distribution in hippocampal astrocytes in the mouse brain.
FISH
aging
astrocytes
ferritin
hemochromatosis
hippocampus
Journal
Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
revised:
30
11
2022
received:
18
07
2022
accepted:
05
12
2022
medline:
30
3
2023
pubmed:
24
12
2022
entrez:
23
12
2022
Statut:
ppublish
Résumé
Astrocytes are thought to play a crucial role in brain iron homeostasis. How they accomplish this regulation in vivo is unclear. In a recent transcriptomic analysis, we showed that polysomal Ftl1 and Fth1 mRNAs, encoding the ferritin light (Ftl) and heavy (Fth) chains that assemble into ferritin, a critical complex for iron storage and reduction, are enriched in perisynaptic astrocytic processes as compared to astrocytic soma. These data suggested that ferritin translation plays a specific role at the perisynaptic astrocytic interface and is tighly regulated by local translation. Here, we used our recently described AstroDot 3D in situ methodology to study the density and localization of ferritin mRNAs in astrocytes in the hippocampus in three different contexts in which local or systemic iron overload has been documented: aging, the hepcidin knock-out mouse model of hemochromatosis and the APP/PS1dE9 mouse model of Alzheimer's disease (AD). Our results showed that in wild type mice, Fth1 mRNA density was higher than Ftl1 and that both mRNAs were mostly distributed in astrocyte fine processes. Aging and absence of hepcidin caused an increased Fth1/Ftl1 ratio in astrocytes and in the case of aging, led to a redistribution of Fth1 mRNAs in astrocytic fine processes. In contrast, in AD mice, we observed a lower Fth1/Ftl1 ratio. Fth1 mRNAs became more somatic and Ftl1 mRNAs redistributed in large processes of astrocytes proximal to Amyloid beta (Aß) deposits. Hence, we propose that regulation of ferritin mRNA density and distribution in astrocytes contribute to iron homeostasis in physiology and pathophysiology.
Substances chimiques
Ferritins
9007-73-2
Hepcidins
0
Amyloid beta-Peptides
0
RNA, Messenger
0
Iron
E1UOL152H7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
847-857Informations de copyright
© 2022 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Références
Abbott, N. J., Ronnback, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews. Neuroscience, 7(1), 41-53.
Alvarez, J. I., Katayama, T., & Prat, A. (2013). Glial influence on the blood brain barrier. Glia, 61(12), 1939-1958.
Anderson, G. J., & Frazer, D. M. (2017). Current understanding of iron homeostasis. The American Journal of Clinical Nutrition, 106(Suppl 6), 1559 S-1566 S.
Atanasiu, V., Manolescu, B., & Stoian, I. (2007). Hepcidin-central regulator of iron metabolism. European Journal of Haematology, 78(1), 1-10.
Batiuk, M. Y., Martirosyan, A., Wahis, J., de Vin, F., Marneffe, C., Kusserow, C., Koeppen, J., Viana, J. F., Oliveira, J. F., Voet, T., Ponting, C. P., Belgard, T. G., & Holt, M. G. (2020). Identification of region-specific astrocyte subtypes at single cell resolution. Nature Communications, 11(1), 1220.
Belaidi, A. A., & Bush, A. I. (2016). Iron neurochemistry in Alzheimer's disease and Parkinson's disease: Targets for therapeutics. Journal of Neurochemistry, 139(Suppl 1), 179-197.
Brissot, P., Pietrangelo, A., Adams, P. C., de Graaff, B., McLaren, C. E., & Loreal, O. (2018). Haemochromatosis. Nature Reviews. Disease Primers, 4, 18016.
Bushong, E. A., Martone, M. E., Jones, Y. Z., & Ellisman, M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. The Journal of Neuroscience, 22(1), 183-192.
Ceyzeriat, K., Ben Haim, L., Denizot, A., Pommier, D., Matos, M., Guillemaud, O., Palomares, M. A., Abjean, L., Petit, F., Gipchtein, P., Gaillard, M. C., Guillermier, M., Bernier, S., Gaudin, M., Auregan, G., Josephine, C., Dechamps, N., Veran, J., Langlais, V., … Escartin, C. (2018). Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathologica Communications, 6(1), 104.
Cheli, V. T., Correale, J., Paez, P. M., & Pasquini, J. M. (2020). Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro, 12, 1759091420962681.
Cheli, V. T., Santiago Gonzalez, D. A., Wan, Q., Denaroso, G., Wan, R., Rosenblum, S. L., & Paez, P. M. (2021). H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia, 69(12), 2981-2998.
Codazzi, F., Pelizzoni, I., Zacchetti, D., & Grohovaz, F. (2015). Iron entry in neurons and astrocytes: A link with synaptic activity. Frontiers in Molecular Neuroscience, 8, 18.
Cohen-Salmon, M., Slaoui, L., Mazare, N., Gilbert, A., Oudart, M., Alvear-Perez, R., Elorza-Vidal, X., Chever, O., & Boulay, A. C. (2021). Astrocytes in the regulation of cerebrovascular functions. Glia, 69(4), 817-841.
Connor, J. R., & Menzies, S. L. (1995). Cellular management of iron in the brain. Journal of the Neurological Sciences, 134(Suppl), 33-44.
Crichton, R. R., Dexter, D. T., & Ward, R. J. (2011). Brain iron metabolism and its perturbation in neurological diseases. Journal of Neural Transmission (Vienna), 118(3), 301-314.
Dallerac, G., Zapata, J., & Rouach, N. (2018). Versatile control of synaptic circuits by astrocytes: Where, when and how? Nature Reviews. Neuroscience, 19(12), 729-743.
Dringen, R., Bishop, G. M., Koeppe, M., Dang, T. N., & Robinson, S. R. (2007). The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochemical Research, 32(11), 1884-1890.
Finazzi, D., & Arosio, P. (2014). Biology of ferritin in mammals: An update on iron storage, oxidative damage and neurodegeneration. Archives of Toxicology, 88(10), 1787-1802.
Harrison, P. M., & Arosio, P. (1996). The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161-203.
He, L., Vanlandewijck, M., Mae, M. A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K., Lebouvier, T., Lavina, B., Gouveia, L., Sun, Y., Raschperger, E., Segerstolpe, A., Liu, J., Gustafsson, S., Rasanen, M., Zarb, Y., Mochizuki, N., Keller, A., … Betsholtz, C. (2018). Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Scientific Data, 5, 180160.
Hentze, M. W., Muckenthaler, M. U., Galy, B., & Camaschella, C. (2010). Two to tango: Regulation of mammalian iron metabolism. Cell, 142(1), 24-38.
Hoepken, H. H., Korten, T., Robinson, S. R., & Dringen, R. (2004). Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. Journal of Neurochemistry, 88(5), 1194-1202.
Hohnholt, M. C., & Dringen, R. (2013). Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes. Biochemical Society Transactions, 41(6), 1588-1592.
Ijomone, O. M., Ifenatuoha, C. W., Aluko, O. M., Ijomone, O. K., & Aschner, M. (2020). The aging brain: Impact of heavy metal neurotoxicity. Critical Reviews in Toxicology, 50(9), 801-814.
Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., & Borchelt, D. R. (2004). Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Human Molecular Genetics, 13(2), 159-170.
Kotla, N. K., Dutta, P., Parimi, S., & Das, N. K. (2022). The role of ferritin in health and disease: Recent advances and understandings. Metabolites, 12(7), 609.
Lesbordes-Brion, J. C., Viatte, L., Bennoun, M., Lou, D. Q., Ramey, G., Houbron, C., Hamard, G., Kahn, A., & Vaulont, S. (2006). Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood, 108(4), 1402-1405.
Liu, C., Liang, M. C., & Soong, T. W. (2019). Nitric oxide, iron and neurodegeneration. Frontiers in Neuroscience, 13, 114.
Loughnan, R., Ahern, J., Tompkins, C., Palmer, C. E., Iversen, J., Thompson, W. K., Andreassen, O., Jernigan, T., Sugrue, L., Dale, A., Boyle, M. E. T., & Fan, C. C. (2022). Association of Genetic Variant Linked to hemochromatosis with brain magnetic resonance imaging measures of iron and movement disorders. JAMA Neurology, 79(9), 919-928.
Lozoff, B., Beard, J., Connor, J., Barbara, F., Georgieff, M., & Schallert, T. (2006). Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutrition Reviews, 64(5 Pt 2), S34-S43 discussion S72-91.
Lunova, M., Schwarz, P., Nuraldeen, R., Levada, K., Kuscuoglu, D., Stutzle, M., Vujic Spasic, M., Haybaeck, J., Ruchala, P., Jirsa, M., Deschemin, J. C., Vaulont, S., Trautwein, C., & Strnad, P. (2017). Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells. The Journal of Pathology, 241(1), 104-114.
Mazare, N., Oudart, M., Moulard, J., Cheung, G., Tortuyaux, R., Mailly, P., Mazaud, D., Bemelmans, A. P., Boulay, A. C., Blugeon, C., Jourdren, L., Le Crom, S., Rouach, N., & Cohen-Salmon, M. (2020). Local translation in Perisynaptic astrocytic processes is specific and changes after fear conditioning. Cell Reports, 32(8), 108076.
Mezzanotte, M., Ammirata, G., Boido, M., Stanga, S., & Roetto, A. (2022). Activation of the hepcidin-Ferroportin1 pathway in the brain and astrocytic-neuronal crosstalk to counteract iron dyshomeostasis during aging. Scientific Reports, 12(1), 11724.
Molina-Holgado, F., Hider, R. C., Gaeta, A., Williams, R., & Francis, P. (2007). Metals ions and neurodegeneration. Biometals, 20(3-4), 639-654.
Moller, H. E., Bossoni, L., Connor, J. R., Crichton, R. R., Does, M. D., Ward, R. J., Zecca, L., Zucca, F. A., & Ronen, I. (2019). Iron, myelin, and the brain: Neuroimaging meets neurobiology. Trends in Neurosciences, 42(6), 384-401.
Muckenthaler, M. U., Rivella, S., Hentze, M. W., & Galy, B. (2017). A red carpet for iron metabolism. Cell, 168(3), 344-361.
Nemeth, E., & Ganz, T. (2006). Regulation of iron metabolism by hepcidin. Annual Review of Nutrition, 26, 323-342.
Nemeth, E., & Ganz, T. (2021). Hepcidin-Ferroportin interaction controls systemic iron homeostasis. International Journal of Molecular Sciences, 22(12), 6493.
Nemeth, E., & Ganz, T. (2022). Hepcidin and iron in health and disease. Annual Review of Medicine, 7.1-7.17.
Oshiro, S., Morioka, M. S., & Kikuchi, M. (2011). Dysregulation of iron metabolism in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Advances in Pharmacological Sciences, 2011, 378278.
Oudart, M., Tortuyaux, R., Mailly, P., Mazare, N., Boulay, A. C., & Cohen-Salmon, M. (2020). AstroDot - a new method for studying the spatial distribution of mRNA in astrocytes. Journal of Cell Science, 133(7), 1-11.
Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: Astrocytes process and control synaptic information. Trends in Neurosciences, 32(8), 421-431.
Raha-Chowdhury, R., Raha, A. A., Forostyak, S., Zhao, J. W., Stott, S. R., & Bomford, A. (2015). Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neuroscience, 16, 24.
Sharma, S., Sethi, S. K., Reese, D., Gharabaghi, S., Yerramsetty, K. K., Palutla, V. K., Chen, Y., Haacke, E. M., & Jog, M. S. (2022). Brain iron deposition and movement disorders in hereditary haemochromatosis without liver failure: A cross-sectional study. European Journal of Neurology, 29(5), 1417-1426.
Song, S., Gao, Y., Sheng, Y., Rui, T., & Luo, C. (2021). Targeting NRF2 to suppress ferroptosis in brain injury. Histology and Histopathology, 36(4), 383-397.
Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F., & Yong, V. W. (2014). Iron in multiple sclerosis: Roles in neurodegeneration and repair. Nature Reviews. Neurology, 10(8), 459-468.
Torrance, J. D., & Bothwell, T. H. (1980). In J. D. Cook (Ed.), Tissue iron stores (Vol. 1). Churchill Livingstone.
Vanlandewijck, M., He, L., Mae, M. A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K., Lebouvier, T., Lavina, B., Gouveia, L., Sun, Y., Raschperger, E., Rasanen, M., Zarb, Y., Mochizuki, N., Keller, A., Lendahl, U., & Betsholtz, C. (2018). A molecular atlas of cell types and zonation in the brain vasculature. Nature, 554(7693), 475-480.
Vujic, M. (2014). Molecular basis of HFE-hemochromatosis. Frontiers in Pharmacology, 5, 42.
Wagstaff, M., Worwood, M., & Jacobs, A. (1978). Properties of human tissue isoferritins. The Biochemical Journal, 173(3), 969-977.
Wang, X. S., Ong, W. Y., & Connor, J. R. (2002). A light and electron microscopic study of divalent metal transporter-1 distribution in the rat hippocampus, after kainate-induced neuronal injury. Experimental Neurology, 177(1), 193-201.
Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A., & Van Eldik, L. J. (2014). Using mice to model Alzheimer's dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Frontiers in Genetics, 5, 88.
Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews. Neuroscience, 5(11), 863-873.
Zhang, X., Gou, Y. J., Zhang, Y., Li, J., Han, K., Xu, Y., Li, H., You, L. H., Yu, P., Chang, Y. Z., & Gao, G. (2020). Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-beta induced brain damage in mice. Cell Death Discov, 6(1), 113.
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A., & Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929-11947.