A network approach for low dimensional signatures from high throughput data.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 12 2022
Historique:
received: 14 06 2022
accepted: 30 11 2022
entrez: 23 12 2022
pubmed: 24 12 2022
medline: 28 12 2022
Statut: epublish

Résumé

One of the main objectives of high-throughput genomics studies is to obtain a low-dimensional set of observables-a signature-for sample classification purposes (diagnosis, prognosis, stratification). Biological data, such as gene or protein expression, are commonly characterized by an up/down regulation behavior, for which discriminant-based methods could perform with high accuracy and easy interpretability. To obtain the most out of these methods features selection is even more critical, but it is known to be a NP-hard problem, and thus most feature selection approaches focuses on one feature at the time (k-best, Sequential Feature Selection, recursive feature elimination). We propose DNetPRO, Discriminant Analysis with Network PROcessing, a supervised network-based signature identification method. This method implements a network-based heuristic to generate one or more signatures out of the best performing feature pairs. The algorithm is easily scalable, allowing efficient computing for high number of observables ([Formula: see text]-[Formula: see text]). We show applications on real high-throughput genomic datasets in which our method outperforms existing results, or is compatible with them but with a smaller number of selected features. Moreover, the geometrical simplicity of the resulting class-separation surfaces allows a clearer interpretation of the obtained signatures in comparison to nonlinear classification models.

Identifiants

pubmed: 36564421
doi: 10.1038/s41598-022-25549-9
pii: 10.1038/s41598-022-25549-9
pmc: PMC9789141
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

22253

Informations de copyright

© 2022. The Author(s).

Références

Animals (Basel). 2020 Feb 05;10(2):
pubmed: 32033399
Genome Res. 2014 Jan;24(1):14-24
pubmed: 24092820
Bioinformatics. 2019 Oct 15;35(20):4200-4202
pubmed: 30903160
Nat Biotechnol. 2014 Jul;32(7):644-52
pubmed: 24952901
Genome Res. 2015 Nov;25(11):1610-21
pubmed: 26297486
Oncotarget. 2016 Mar 1;7(9):9666-79
pubmed: 26575327
Bioinformatics. 2005 Oct 15;21(20):3896-904
pubmed: 16105897
BMC Bioinformatics. 2009 Aug 20;10:256
pubmed: 19695104
Nat Commun. 2021 Apr 15;12(1):2277
pubmed: 33859189
Nucleic Acids Res. 2015 Jul 13;43(12):e79
pubmed: 25829177
J Alzheimers Dis. 2019;72(3):911-918
pubmed: 31658056
IEEE/ACM Trans Comput Biol Bioinform. 2012 Sep-Oct;9(5):1422-31
pubmed: 22547432
PLoS Comput Biol. 2015 Apr 08;11(4):e1004120
pubmed: 25853560
Cell. 2015 Jul 2;162(1):184-97
pubmed: 26095251
J Clin Oncol. 2009 May 1;27(13):2209-16
pubmed: 19307502
Annu Rev Genomics Hum Genet. 2011;12:217-44
pubmed: 21721939
Genome Med. 2016 Dec 19;8(1):134
pubmed: 27993174
Pharmacotherapy. 2017 Sep;37(9):988-989
pubmed: 28632968
Stat Appl Genet Mol Biol. 2004;3:Article19
pubmed: 16646797
Brief Bioinform. 2021 Nov 5;22(6):
pubmed: 34010955
Bioinformatics. 2009 May 1;25(9):1203-4
pubmed: 19276151

Auteurs

Nico Curti (N)

Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
INFN Bologna, Bologna, Italy.

Giuseppe Levi (G)

Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
INFN Bologna, Bologna, Italy.

Enrico Giampieri (E)

INFN Bologna, Bologna, Italy. enrico.giampieri@unibo.it.
Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy. enrico.giampieri@unibo.it.

Gastone Castellani (G)

INFN Bologna, Bologna, Italy.
Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.

Daniel Remondini (D)

Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
INFN Bologna, Bologna, Italy.

Articles similaires

Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals Dogs Dog Diseases Autophagy Immunohistochemistry
Humans Male Female Esophageal Neoplasms Esophageal Squamous Cell Carcinoma

Classifications MeSH