Surface Passivation of III-V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices.


Journal

ACS applied electronic materials
ISSN: 2637-6113
Titre abrégé: ACS Appl Electron Mater
Pays: United States
ID NLM: 101734996

Informations de publication

Date de publication:
26 Jul 2022
Historique:
entrez: 26 12 2022
pubmed: 27 12 2022
medline: 27 12 2022
Statut: ppublish

Résumé

Numerous efforts have been devoted to improve the electronic and optical properties of III-V compound materials via reduction of their nonradiative states, aiming at highly efficient III-V sub-micrometer active devices and circuits. Despite many advances, the poor reproducibility and short-term passivation effect of chemical treatments, such as sulfidation and nitridation, requires the use of protective encapsulation methods, not only to protect the surface, but also to provide electrical isolation for device manufacturing. There is still a controversial debate on which combination of chemical treatment and capping dielectric layer can best reproducibly protect the crystal surface of III-V materials while being compatible with readily available semiconductor-foundry plasma deposition methods. This work reports on a systematic experimental study on the role of sulfide ammonium chemical treatment followed by dielectric coating (either silicon oxide or nitride) in the passivation effect of GaAs/AlGaAs nanopillars. Our results conclusively show that, under ambient conditions, the best surface passivation is achieved using ammonium sulfide followed by encapsulation with a thin layer of silicon nitride by low-frequency plasma-enhanced chemical deposition. Here, the sulfurized GaAs surfaces, high level of hydrogen ions, and low-frequency (380 kHz) excitation plasma that enable intense bombardment of hydrogen, all seem to provide a combined active role in the passivation mechanism of the pillars by reducing the surface states. As a result, we observe up to a 29-fold increase of the photoluminescence (PL) integrated intensity for the best samples as compared to untreated nanopillars. X-ray photoelectron spectroscopy analysis confirms the best treatments show remarkable removal of gallium and arsenic native oxides. Time-resolved micro-PL measurements display nanosecond lifetimes resulting in a record-low surface recombination velocity of ∼1.1 × 10

Identifiants

pubmed: 36570334
doi: 10.1021/acsaelm.2c00195
pmc: PMC9778088
doi:

Types de publication

Journal Article

Langues

eng

Pagination

3399-3410

Informations de copyright

© 2022 American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Nano Lett. 2013 Apr 10;13(4):1632-7
pubmed: 23485255
Nano Lett. 2014 Oct 8;14(10):5989-94
pubmed: 25232659
Nat Commun. 2011 Nov 15;2:539
pubmed: 22086339
Nano Lett. 2017 Apr 12;17(4):2627-2633
pubmed: 28340296
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28360-28367
pubmed: 32469493
Nat Nanotechnol. 2019 Jan;14(1):12-22
pubmed: 30559486
Nat Commun. 2013;4:1497
pubmed: 23422665
Nano Lett. 2009 Sep;9(9):3349-53
pubmed: 19736975
Opt Express. 2010 May 24;18(11):11230-41
pubmed: 20588983
Nat Photonics. 2019 Oct;13(10):720-727
pubmed: 32231707
Sci Rep. 2017 Mar 22;7:45082
pubmed: 28327629
Opt Express. 2020 Oct 26;28(22):32302-32315
pubmed: 33114919
Nat Commun. 2016 Jun 17;7:11927
pubmed: 27311597
Opt Express. 2016 Aug 8;24(16):17916-27
pubmed: 27505759
ACS Appl Mater Interfaces. 2021 Sep 22;13(37):44663-44672
pubmed: 34494814
ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16706-11
pubmed: 25221844
Nano Lett. 2012 Sep 12;12(9):4484-9
pubmed: 22889241
Nat Commun. 2017 Feb 02;8:14323
pubmed: 28148954
Nano Lett. 2015 Jan 14;15(1):63-8
pubmed: 25434999

Auteurs

Bejoys Jacob (B)

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Filipe Camarneiro (F)

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Jérôme Borme (J)

INL - International Iberian Nanotechnology Laboratory, 2D Materials and Devices group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Oleksandr Bondarchuk (O)

INL - International Iberian Nanotechnology Laboratory, Advanced Electron Microscopy, Imaging and Spectroscopy Facility, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Jana B Nieder (JB)

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Bruno Romeira (B)

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.

Classifications MeSH