Effect of hydration on the anatomical form of human dry skulls.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 12 2022
29 12 2022
Historique:
received:
18
10
2022
accepted:
23
12
2022
entrez:
29
12
2022
pubmed:
30
12
2022
medline:
3
1
2023
Statut:
epublish
Résumé
In radiology research soft tissues are often simulated on bone specimens using liquid materials such as water, or gel-like materials, such as ballistic gel. This study aimed to test the effect of hydration on the anatomical form of dry craniofacial bone specimens. Sixteen human dry skulls and 16 mandibles were scanned with an industrial scanner in dry conditions and after water embedding. Ten skulls were also embedded for different time periods (5 or 15 min). The subsequent 3D surface models were best-fit superimposed and compared by calculating mean absolute distances between them at various measurement areas. There was a significant, primarily enlargement effect of hydration on the anatomical form of dry skeletal specimens as detected after water embedding for a short time period. The effect was smaller in dry skulls (median 0.20 mm, IQR 0.17 mm) and larger in mandibles (median 0.56 mm, IQR 0.57 mm). The effect of different water embedding times was negligible. Based on the present findings, we suggest to shortly hydrate the skeletal specimens prior to reference model acquisition so that they are comparable to hydrated specimens when liquid materials are used as soft-tissue simulants for various radiologic research purposes.
Identifiants
pubmed: 36581665
doi: 10.1038/s41598-022-27042-9
pii: 10.1038/s41598-022-27042-9
pmc: PMC9800411
doi:
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22549Informations de copyright
© 2022. The Author(s).
Références
Luan, F.-J., Zhang, J., Mak, K.-C., Liu, Z.-H. & Wang, H.-Q. Low radiation X-rays: Benefiting people globally by reducing cancer risks. Int. J. Med. Sci. 18, 73–80 (2021).
doi: 10.7150/ijms.48050
Schropp, L., Alyass, N. S., Wenzel, A. & Stavropoulos, A. Validity of wax and acrylic as soft-tissue simulation materials used in in vitro radiographic studies. Dentomaxillofac. Radiol. 41, 686–690 (2012).
doi: 10.1259/dmfr/33467269
van Leeuwen, B. J. et al. Effect of voxel size in cone-beam computed tomography on surface area measurements of dehiscences and fenestrations in the lower anterior buccal region. Clin. Oral. Investig. https://doi.org/10.1007/s00784-022-04521-x (2022).
doi: 10.1007/s00784-022-04521-x
Dusseldorp, J. K., Stamatakis, H. C. & Ren, Y. Soft tissue coverage on the segmentation accuracy of the 3D surface-rendered model from cone-beam CT. Clin. Oral Investig. 21, 921–930 (2017).
doi: 10.1007/s00784-016-1844-x
Caldas, M. P., Ramos-Perez, F. M. M., de Almeida, S. M. & Haiter-Neto, F. Comparative evaluation among different materials to replace soft tissue in oral radiology studies. J. Appl. Oral Sci. 18, 264–267 (2010).
doi: 10.1590/S1678-77572010000300012
Lopes, P. A., Santaella, G. M., Lima, C. A. S., Vasconcelos, K. F. & Groppo, F. C. Evaluation of soft tissues simulant materials in cone beam computed tomography. Dentomaxillofac. Radiol. 48, 20180072 (2019).
doi: 10.1259/dmfr.20180072
Engelbrecht, W. P., Fourie, Z., Damstra, J., Gerrits, P. O. & Ren, Y. The influence of the segmentation process on 3D measurements from cone beam computed tomography-derived surface models. Clin. Oral Investig. 17, 1919–1927 (2013).
doi: 10.1007/s00784-012-0881-3
Friedli, L., Kloukos, D., Kanavakis, G., Halazonetis, D. & Gkantidis, N. The effect of threshold level on bone segmentation of cranial base structures from CT and CBCT images. Sci. Rep. 10, 7361 (2020).
doi: 10.1038/s41598-020-64383-9
Häner, S. T., Kanavakis, G., Matthey, F. & Gkantidis, N. Voxel-based superimposition of serial craniofacial CBCTs: Reliability, reproducibility and segmentation effect on hard-tissue outcomes. Orthod. Craniofac. Res. 23, 92–101 (2020).
doi: 10.1111/ocr.12347
Winkler, J. & Gkantidis, N. Trueness and precision of intraoral scanners in the maxillary dental arch: An in vivo analysis. Sci. Rep. 10, 1172 (2020).
doi: 10.1038/s41598-020-58075-7
Probst, J. et al. Precision of a hand-held 3D surface scanner in dry and wet skeletal surfaces: An ex vivo study. Diagnostics (Basel) 12, 2251 (2022).
doi: 10.3390/diagnostics12092251
Hassan, B., van der Stelt, P. & Sanderink, G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: Influence of patient scanning position. Eur. J. Orthod. 31, 129–134 (2009).
doi: 10.1093/ejo/cjn088
Besl, P. J. & McKay, N. D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
doi: 10.1109/34.121791
Kanavakis, G., Ghamri, M. & Gkantidis, N. Novel anterior cranial base area for voxel-based superimposition of craniofacial CBCTs. J. Clin. Med. 11, 3536 (2022).
doi: 10.3390/jcm11123536
Ghamri, M., Kanavakis, G. & Gkantidis, N. Reliability of different anterior cranial base reference areas for voxel-based superimposition. J. Clin. Med. 10, 5429 (2021).
doi: 10.3390/jcm10225429
Baumrind, S., Miller, D. & Molthen, R. The reliability of head film measurements. 3. Tracing superimposition. Am. J. Orthod. 70, 617–644 (1976).
doi: 10.1016/0002-9416(76)90224-4
Kanavakis, G., Häner, S. T., Matthey, F. & Gkantidis, N. Voxel-based superimposition of serial craniofacial CBCTs for facial soft-tissue assessment: Reproducibility and segmentation effects. Am. J. Orthod. Dentofac. Orthop. 159, 343–351 (2021).
doi: 10.1016/j.ajodo.2020.04.022
Lagravère, M. O., Carey, J., Toogood, R. W. & Major, P. W. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 134, 112–116 (2008).
doi: 10.1016/j.ajodo.2006.08.024
Liang, X. et al. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. Eur. J. Radiol. 75, 270–274 (2010).
doi: 10.1016/j.ejrad.2009.04.016
Wang, X. et al. Material separation in x-ray CT with energy resolved photon-counting detectors. Med. Phys. 38, 1534–1546 (2011).
doi: 10.1118/1.3553401
Nascimento, E. H. L. et al. Development of a model of soft tissue simulation using ballistic gelatin for CBCT acquisitions related to dentomaxillofacial radiology research. Dentomaxillofac. Radiol. 50, 20200191 (2021).
doi: 10.1259/dmfr.20200191