FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 12 2022
Historique:
received: 08 07 2022
accepted: 22 12 2022
entrez: 29 12 2022
pubmed: 30 12 2022
medline: 3 1 2023
Statut: epublish

Résumé

Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1

Identifiants

pubmed: 36581671
doi: 10.1038/s41598-022-26986-2
pii: 10.1038/s41598-022-26986-2
pmc: PMC9800572
doi:

Substances chimiques

Dopamine Plasma Membrane Transport Proteins 0
Fmr1 protein, rat 0
Fragile X Mental Retardation Protein 139135-51-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

22535

Informations de copyright

© 2022. The Author(s).

Références

DSM-5. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, 2013).
Song, F. J., Barton, P., Sleightholme, V., Yao, G. L. & Fry-Smith, A. Screening for fragile X syndrome: a literature review and modelling study. Health Technol. Assess 7, 1–106. https://doi.org/10.3310/hta7160 (2003).
doi: 10.3310/hta7160
Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065. https://doi.org/10.1038/nrdp.2017.65 (2017).
doi: 10.1038/nrdp.2017.65
Maurin, T., Zongaro, S. & Bardoni, B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci. Biobehav. Rev. 46(Pt 2), 242–255. https://doi.org/10.1016/j.neubiorev.2014.01.006 (2014).
doi: 10.1016/j.neubiorev.2014.01.006
Harris, S. W. et al. Autism profiles of males with fragile X syndrome. Am. J. Ment. Retard. 113, 427–438. https://doi.org/10.1352/2008.113:427-438 (2008).
doi: 10.1352/2008.113:427-438
Hernandez, R. N. et al. Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. Am. J. Med. Genet. A 149A, 1125–1137. https://doi.org/10.1002/ajmg.a.32848 (2009).
doi: 10.1002/ajmg.a.32848
Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739. https://doi.org/10.1016/S0959-4388(00)00153-7 (2000).
doi: 10.1016/S0959-4388(00)00153-7
Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197. https://doi.org/10.1016/S0959-4388(97)80007-4 (1997).
doi: 10.1016/S0959-4388(97)80007-4
Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67, 53–83. https://doi.org/10.1016/S0301-0082(02)00011-4 (2002).
doi: 10.1016/S0301-0082(02)00011-4
Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–238. https://doi.org/10.1016/j.conb.2012.11.012 (2013).
doi: 10.1016/j.conb.2012.11.012
Gadow, K. D., Roohi, J., DeVincent, C. J. & Hatchwell, E. Association of ADHD, tics, and anxiety with dopamine transporter (DAT1) genotype in autism spectrum disorder. J. Child Psychol. Psychiatry 49, 1331–1338. https://doi.org/10.1111/j.1469-7610.2008.01952.x (2008).
doi: 10.1111/j.1469-7610.2008.01952.x
Bowton, E. et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl. Psychiatry 4, e464. https://doi.org/10.1038/tp.2014.90 (2014).
doi: 10.1038/tp.2014.90
Anderson, B. M. et al. Examination of association to autism of common genetic variationin genes related to dopamine. Autism. Res. 1, 364–369. https://doi.org/10.1002/aur.55 (2008).
doi: 10.1002/aur.55
Pavăl, D. A dopamine hypothesis of autism spectrum disorder. Dev. Neurosci. 39, 355–360. https://doi.org/10.1159/000478725 (2017).
doi: 10.1159/000478725
Lewis, M. & Kim, S. J. The pathophysiology of restricted repetitive behavior. J. Neurodev. Disord. 1, 114–132. https://doi.org/10.1007/s11689-009-9019-6 (2009).
doi: 10.1007/s11689-009-9019-6
Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. https://doi.org/10.1016/j.tins.2007.03.008 (2007).
doi: 10.1016/j.tins.2007.03.008
Chen, S. Y. et al. Parcellation of the striatal complex into dorsal and ventral districts. Proc. Natl. Acad. Sci. U S A 117, 7418–7429. https://doi.org/10.1073/pnas.1921007117 (2020).
doi: 10.1073/pnas.1921007117
Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476. https://doi.org/10.1038/nrn1919 (2006).
doi: 10.1038/nrn1919
Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691. https://doi.org/10.1101/cshperspect.a021691 (2015).
doi: 10.1101/cshperspect.a021691
Fieblinger, T. Striatal control of movement: A role for new neuronal (sub-) Populations?. Front. Hum. Neurosci. 15, 697284. https://doi.org/10.3389/fnhum.2021.697284 (2021).
doi: 10.3389/fnhum.2021.697284
Langen, M. et al. Changes in the development of striatum are involved in repetitive behavior in autism. Biol. Psychiatry 76, 405–411. https://doi.org/10.1016/j.biopsych.2013.08.013 (2014).
doi: 10.1016/j.biopsych.2013.08.013
Langen, M., Durston, S., Kas, M. J., van Engeland, H. & Staal, W. G. The neurobiology of repetitive behavior: …and men. Neurosci. Biobehav. Rev. 35, 356–365. https://doi.org/10.1016/j.neubiorev.2010.02.005 (2011).
doi: 10.1016/j.neubiorev.2010.02.005
Rodriguiz, R. M., Chu, R., Caron, M. G. & Wetsel, W. C. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav. Brain Res. 148, 185–198. https://doi.org/10.1016/s0166-4328(03)00187-6 (2004).
doi: 10.1016/s0166-4328(03)00187-6
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612. https://doi.org/10.1038/379606a0 (1996).
doi: 10.1038/379606a0
Hadar, R. et al. Rats overexpressing the dopamine transporter display behavioral and neurobiological abnormalities with relevance to repetitive disorders. Sci. Rep. 6, 39145. https://doi.org/10.1038/srep39145 (2016).
doi: 10.1038/srep39145
Sotnikova, T. D., Efimova, E. V. & Gainetdinov, R. R. Enhanced dopamine transmission and hyperactivity in the dopamine transporter heterozygous mice lacking the D3 dopamine receptor. Int. J. Mol. Sci. 21, 8216. https://doi.org/10.3390/ijms21218216 (2020).
doi: 10.3390/ijms21218216
Ciaccio, C. et al. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital. J. Pediatr. 43, 39. https://doi.org/10.1186/s13052-017-0355-y (2017).
doi: 10.1186/s13052-017-0355-y
Chromik, L. C. et al. The influence of hyperactivity, impulsivity, and attention problems on social functioning in adolescents and young adults with fragile X syndrome. J. Atten. Disord. 23, 181–188. https://doi.org/10.1177/1087054715571739 (2019).
doi: 10.1177/1087054715571739
Golden, C. E. M. et al. Deletion of the KH1 domain of Fmr1 leads to transcriptional alterations and attentional deficits in rats. Cereb Cortex 29, 2228–2244. https://doi.org/10.1093/cercor/bhz029 (2019).
doi: 10.1093/cercor/bhz029
Schiavi, S. et al. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutr. Neurosci. 25(5), 898–911. https://doi.org/10.1080/1028415X.2020.1819107 (2020).
doi: 10.1080/1028415X.2020.1819107
Schiavi, S. et al. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology https://doi.org/10.1038/s41386-022-01454-7 (2022).
doi: 10.1038/s41386-022-01454-7
Nikolaus, S. et al. GABAergic control of nigrostriatal and mesolimbic dopamine in the rat brain. Front. Behav. Neurosci. 12, 38 (2018).
doi: 10.3389/fnbeh.2018.00038
Nikolaus, S., Antke, C., Hautzel, H. & Mueller, H. W. Pharmacological treatment with L-DOPA may reduce striatal dopamine transporter binding in in vivo imaging studies. Nuklearmedizin 55, 21–28. https://doi.org/10.3413/Nukmed-0764-15-08 (2016).
doi: 10.3413/Nukmed-0764-15-08
Nikolaus, S. et al. DAT versus D2 receptor binding in the rat striatum: l-DOPA-induced motor activity is better predicted by reuptake than release of dopamine. Synapse 70, 369–377. https://doi.org/10.1002/syn.21911 (2016).
doi: 10.1002/syn.21911
Suwijn, S. R., de Bruin, K., de Bie, R. M. A. & Booij, J. The role of SPECT imaging of the dopaminergic system in translational research on Parkinson’s disease. Parkinsonism Relat. Disord. 20, S184–S186. https://doi.org/10.1016/S1353-8020(13)70043-9 (2014).
doi: 10.1016/S1353-8020(13)70043-9
Massari, R., D’Elia, A. & Soluri, A. A new high-resolution imaging system (HiRIS2) detector for preclinical SPECT imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 917, 25–30. https://doi.org/10.1016/j.nima.2018.11.095 (2019).
doi: 10.1016/j.nima.2018.11.095
Massari, R., D’Elia, A. & Soluri, A. Preliminary results on a small animal SPECT system based on H13700 PSMPT coupled with CRY018 array. Nucl. Instrum. Methods Phys. Res. Sect. A 940, 296–301. https://doi.org/10.1016/j.nima.2019.06.013 (2019).
doi: 10.1016/j.nima.2019.06.013
Massari, R., D’Elia, A., Soluri, A. & Soluri, A. Super spatial resolution (SSR) method for small animal SPECT imaging: a Monte Carlo study. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 982, 164584. https://doi.org/10.1016/j.nima.2020.164584 (2020).
doi: 10.1016/j.nima.2020.164584
D’Elia, A. et al. Development of a high-resolution SSR-SPECT system for preclinical imaging and neuroimaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1025, 166161. https://doi.org/10.1016/j.nima.2021.166161 (2022).
doi: 10.1016/j.nima.2021.166161
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).
doi: 10.1371/journal.pbio.1000412
Makanjuola, R. O., Hill, G., Dow, R. C., Campbell, G. & Ashcroft, G. W. The effects of psychotropic drugs on exploratory and stereotyped behaviour of rats studied on a hole-board. Psychopharmacology 55, 67–74. https://doi.org/10.1007/BF00432819 (1977).
doi: 10.1007/BF00432819
Servadio, M., Vanderschuren, L. J. & Trezza, V. Modeling autism-relevant behavioral phenotypes in rats and mice: Do “autistic” rodents exist?. Behav. Pharmacol. 26, 522–540. https://doi.org/10.1097/FBP.0000000000000163 (2015).
doi: 10.1097/FBP.0000000000000163
Melancia, F. et al. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol. 175, 3699–3712. https://doi.org/10.1111/bph.14435 (2018).
doi: 10.1111/bph.14435
Schiavi, S. et al. N-acetylcysteine mitigates social dysfunction in a rat model of autism normalizing glutathione imbalance and the altered expression of genes related to synaptic function in specific brain areas. Front. Psychiatry 13, 851679. https://doi.org/10.3389/fpsyt.2022.851679 (2022).
doi: 10.3389/fpsyt.2022.851679
Schiavi, S. et al. Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front. Cell Neurosci. 13, 479. https://doi.org/10.3389/fncel.2019.00479 (2019).
doi: 10.3389/fncel.2019.00479
Sestakova, N., Puzserova, A., Kluknavsky, M. & Bernatova, I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip. Toxicol. 6, 126–135. https://doi.org/10.2478/intox-2013-0020 (2013).
doi: 10.2478/intox-2013-0020
Manduca, A. et al. Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212-2 depend on mGlu5 receptor signalling. Br. J. Pharmacol. 177, 449–463. https://doi.org/10.1111/bph.14879 (2020).
doi: 10.1111/bph.14879
Manduca, A. et al. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur. Neuropsychopharmacol. 25, 1362–1374. https://doi.org/10.1016/j.euroneuro.2015.04.005 (2015).
doi: 10.1016/j.euroneuro.2015.04.005
Hammond, W. T. et al. A gamma camera re-evaluation of potassium iodide blocking efficiency in mice. Health Phys. 92, 396–406. https://doi.org/10.1097/01.HP.0000252322.45350.ee (2007).
doi: 10.1097/01.HP.0000252322.45350.ee
Pahuja, D. N., Rajan, M. G., Borkar, A. V. & Samuel, A. M. Potassium iodate and its comparison to potassium iodide as a blocker of
doi: 10.1097/00004032-199311000-00014
Leung, A. M. et al. American thyroid association scientific statement on the use of potassium iodide ingestion in a nuclear emergency. Thyroid 27, 865–877. https://doi.org/10.1089/thy.2017.0054 (2017).
doi: 10.1089/thy.2017.0054
Nikolaus, S. et al. Effects of L-DOPA on striatal iodine-123-FP-CIT binding and behavioral parameters in the rat. Nucl. Med. Commun. 34, 1223–1232. https://doi.org/10.1097/MNM.0b013e3283657404 (2013).
doi: 10.1097/MNM.0b013e3283657404
Nikolaus, S., Antke, C. & Muller, H. W. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav. Brain Res. 204, 32–66. https://doi.org/10.1016/j.bbr.2009.06.009 (2009).
doi: 10.1016/j.bbr.2009.06.009
Nikolaus, S., Antke, C., Beu, M. & Muller, H. W. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders–results from in vivo imaging studies. Rev. Neurosci. 21, 119–139. https://doi.org/10.1515/revneuro.2010.21.2.119 (2010).
doi: 10.1515/revneuro.2010.21.2.119
Palermo, G., Giannoni, S., Bellini, G., Siciliano, G. & Ceravolo, R. Dopamine transporter imaging, current status of a potential biomarker: a comprehensive review. Int. J. Mol. Sci. 22, 11234. https://doi.org/10.3390/ijms222011234 (2021).
doi: 10.3390/ijms222011234
Booij, J. et al. [123I]FP-CIT binds to the dopamine transporter as assessed by biodistribution studies in rats and SPECT studies in MPTP-lesioned monkeys. Synapse 27, 183–190. https://doi.org/10.1002/(SICI)1098-2396(199711)27:3%3c183::AID-SYN4%3e3.0.CO;2-9 (1997).
doi: 10.1002/(SICI)1098-2396(199711)27:3<183::AID-SYN4>3.0.CO;2-9
Nikolaus, S. et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev. Neurosci. 22, 625–645. https://doi.org/10.1515/RNS.2011.054 (2011).
doi: 10.1515/RNS.2011.054
Scherfler, C. et al. Evaluation of striatal dopamine transporter function in rats by in vivo beta-[
doi: 10.1006/nimg.2002.1158
Lancaster, J. L. et al. Automated regional behavioral analysis for human brain images. Front. Neuroinform. 6, 23. https://doi.org/10.3389/fninf.2012.00023 (2012).
doi: 10.3389/fninf.2012.00023
Loening, A. M. & Gambhir, S. S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imag. 2, 131–137. https://doi.org/10.1162/153535003322556877 (2003).
doi: 10.1162/153535003322556877
Laruelle, M. et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J. Nucl. Med. 35, 743–754 (1994).
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).
doi: 10.1371/journal.pbio.3000410
Sorensen, E. M. et al. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse. Behav. Pharmacol. 26, 733–740. https://doi.org/10.1097/FBP.0000000000000152 (2015).
doi: 10.1097/FBP.0000000000000152
Dolan, B. M. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. U S A 110, 5671–5676. https://doi.org/10.1073/pnas.1219383110 (2013).
doi: 10.1073/pnas.1219383110
Sare, R. M., Figueroa, C., Lemons, A., Loutaev, I. & Beebe Smith, C. Comparative Behavioral Phenotypes of Fmr1 KO, Fxr2 Het, and Fmr1 KO/Fxr2 Het Mice. Brain Sci. 9, 13. https://doi.org/10.3390/brainsci9010013 (2019).
doi: 10.3390/brainsci9010013
Ding, Q., Sethna, F. & Wang, H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav. Brain Res. 271, 72–78. https://doi.org/10.1016/j.bbr.2014.05.046 (2014).
doi: 10.1016/j.bbr.2014.05.046
Melancia, F. & Trezza, V. Modelling fragile X syndrome in the laboratory setting: a behavioral perspective. Behav. Brain Res. 350, 149–163. https://doi.org/10.1016/j.bbr.2018.04.042 (2018).
doi: 10.1016/j.bbr.2018.04.042
Hamilton, S. M. et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav. Neurosci. 128, 103–109. https://doi.org/10.1037/a0035988 (2014).
doi: 10.1037/a0035988
Tian, Y. et al. Loss of FMRP impaired hippocampal long-term plasticity and spatial learning in rats. Front. Mol. Neurosci. 10, 269. https://doi.org/10.3389/fnmol.2017.00269 (2017).
doi: 10.3389/fnmol.2017.00269
Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intract. Rare Dis. Res. 3, 118–133. https://doi.org/10.5582/irdr.2014.01024 (2014).
doi: 10.5582/irdr.2014.01024
Hodges, S. L. et al. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res. 157, 106193. https://doi.org/10.1016/j.eplepsyres.2019.106193 (2019).
doi: 10.1016/j.eplepsyres.2019.106193
Wong, H. et al. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol. Dis. 146, 105118. https://doi.org/10.1016/j.nbd.2020.105118 (2020).
doi: 10.1016/j.nbd.2020.105118
Kosillo, P. & Bateup, H. S. Dopaminergic dysregulation in syndromic autism spectrum disorders: insights from genetic mouse models. Front. Neural Circuits 15, 700968. https://doi.org/10.3389/fncir.2021.700968 (2021).
doi: 10.3389/fncir.2021.700968
Gerasimou, G. P., Aggelopoulou, T. C., Costa, D. C. & Gotzamani-Psarrakou, A. Molecular imaging (SPECT and PET) in the evaluation of patients with movement disorders. Nucl. Med. Rev. Cent. East Eur. 9, 147–153 (2006).
Palermo, G. & Ceravolo, R. Molecular imaging of the dopamine transporter. Cells 8, 872. https://doi.org/10.3390/cells8080872 (2019).
doi: 10.3390/cells8080872
Tatsch, K. & Poepperl, G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J. Nucl. Med. 54, 1331. https://doi.org/10.2967/jnumed.112.105379 (2013).
doi: 10.2967/jnumed.112.105379
Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601. https://doi.org/10.1002/mds.26424 (2015).
doi: 10.1002/mds.26424
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100. https://doi.org/10.1212/WNL.0000000000004058 (2017).
doi: 10.1212/WNL.0000000000004058
Paval, D. & Miclutia, I. V. The dopamine hypothesis of autism spectrum disorder revisited: current status and future prospects. Dev. Neurosci. 43, 73–83. https://doi.org/10.1159/000515751 (2021).
doi: 10.1159/000515751
Nakamura, K. et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gen. Psychiatry 67, 59–68. https://doi.org/10.1001/archgenpsychiatry.2009.137 (2010).
doi: 10.1001/archgenpsychiatry.2009.137
Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M. & Kuikka, J. T. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev. Med. Child Neurol. 50, 593–597. https://doi.org/10.1111/j.1469-8749.2008.03027.x (2008).
doi: 10.1111/j.1469-8749.2008.03027.x
Zürcher, N. R. et al. A simultaneous [(11)C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl. Psychiatry 11, 33–33. https://doi.org/10.1038/s41398-020-01170-0 (2021).
doi: 10.1038/s41398-020-01170-0
Smith, L. N. et al. Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 82, 645–658. https://doi.org/10.1016/j.neuron.2014.03.028 (2014).
doi: 10.1016/j.neuron.2014.03.028
Huebschman, J. L. et al. The role of the dorsal striatum in a mouse model for fragile X syndrome: behavioral and dendritic spine assessment. Brain Res 1795, 148060. https://doi.org/10.1016/j.brainres.2022.148060 (2022).
doi: 10.1016/j.brainres.2022.148060
Fish, E. W. et al. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 8, e77896. https://doi.org/10.1371/journal.pone.0077896 (2013).
doi: 10.1371/journal.pone.0077896
Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & Puglisi-Allegra, S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15, 433–442. https://doi.org/10.1097/00008877-200409000-00018 (2004).
doi: 10.1097/00008877-200409000-00018
Leo, D. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J. Neurosci. 38, 1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018 (2018).
doi: 10.1523/JNEUROSCI.1931-17.2018
Gainetdinov, R. R. et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283, 397–401. https://doi.org/10.1126/science.283.5400.397 (1999).
doi: 10.1126/science.283.5400.397
Yamazaki, M., Arai, T., Yarimizu, J. & Matsumoto, M. 5-HT5A receptor antagonist ASP5736 ameliorates several abnormal behaviors in an Fmr1-targeted transgenic male rat model of fragile X syndrome. Int. J. Neuropsychopharmacol. 25, 786–793. https://doi.org/10.1093/ijnp/pyac041 (2022).
doi: 10.1093/ijnp/pyac041
Uutela, M. et al. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome. Front. Cell Neurosci. 8, 150. https://doi.org/10.3389/fncel.2014.00150 (2014).
doi: 10.3389/fncel.2014.00150
Lozano, R., Hare, E. B. & Hagerman, R. J. Modulation of the GABAergic pathway for the treatment of fragile X syndrome. Neuropsychiatr. Dis. Treat. 10, 1769–1779. https://doi.org/10.2147/NDT.S42919 (2014).
doi: 10.2147/NDT.S42919
Olmos-Serrano, J. L., Corbin, J. G. & Burns, M. P. The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev. Neurosci. 33, 395–403. https://doi.org/10.1159/000332884 (2011).
doi: 10.1159/000332884
Shim, S. H. et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1824–1828. https://doi.org/10.1016/j.pnpbp.2008.08.005 (2008).
doi: 10.1016/j.pnpbp.2008.08.005
Uutela, M. et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav. 11, 513–523. https://doi.org/10.1111/j.1601-183X.2012.00784.x (2012).
doi: 10.1111/j.1601-183X.2012.00784.x
Qiu, G., Chen, S., Guo, J., Wu, J. & Yi, Y. H. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice. Behav. Brain Res. 312, 212–218. https://doi.org/10.1016/j.bbr.2016.06.024 (2016).
doi: 10.1016/j.bbr.2016.06.024
Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & Puglisi-Allegra, S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15, A28 (2004).
doi: 10.1097/00008877-200409000-00107
Chao, O. Y. et al. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol. Brain 13, 111. https://doi.org/10.1186/s13041-020-00649-7 (2020).
doi: 10.1186/s13041-020-00649-7
Jiang, A. et al. Sex differences in dopamine receptor signaling in fmr1 knockout mice: a pilot study. Brain Sci. 11, 1398. https://doi.org/10.3390/brainsci11111398 (2021).
doi: 10.3390/brainsci11111398
Fulks, J. L. et al. Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem. Neurosci. 1, 679–690. https://doi.org/10.1021/cn100032f (2010).
doi: 10.1021/cn100032f
Zhu, X., Ottenheimer, D. & DiLeone, R. J. Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front. Behav. Neurosci. 10, 66. https://doi.org/10.3389/fnbeh.2016.00066 (2016).
doi: 10.3389/fnbeh.2016.00066
Wang, H. et al. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59, 634–647. https://doi.org/10.1016/j.neuron.2008.06.027 (2008).
doi: 10.1016/j.neuron.2008.06.027
Wang, H., Kim, S. S. & Zhuo, M. Roles of fragile x mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent & #x3b1;-Amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization *. J. Biol. Chem. 285, 21888–21901. https://doi.org/10.1074/jbc.M110.116293 (2010).
doi: 10.1074/jbc.M110.116293
Paul, K., Venkitaramani, D. V. & Cox, C. L. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice. J. Physiol. 591, 1133–1143. https://doi.org/10.1113/jphysiol.2012.241067 (2013).
doi: 10.1113/jphysiol.2012.241067
Ott, T. & Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 23, 213–234. https://doi.org/10.1016/j.tics.2018.12.006 (2019).
doi: 10.1016/j.tics.2018.12.006
DiCarlo, G. E. et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J. Clin. Invest. 129, 3407–3419. https://doi.org/10.1172/JCI127411 (2019).
doi: 10.1172/JCI127411
Napolitano, A. et al. Sex differences in autism spectrum disorder: diagnostic, neurobiological, and behavioral features. Front Psychiatry 13, 889636. https://doi.org/10.3389/fpsyt.2022.889636 (2022).
doi: 10.3389/fpsyt.2022.889636

Auteurs

Annunziata D'Elia (A)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy. annunziata.delia@ibbc.cnr.it.
Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy. annunziata.delia@ibbc.cnr.it.

Sara Schiavi (S)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.

Antonia Manduca (A)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.
Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy.

Alessandro Rava (A)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.

Valeria Buzzelli (V)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.

Fabrizio Ascone (F)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.

Tiziana Orsini (T)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy.

Sabrina Putti (S)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy.

Andrea Soluri (A)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy.
Unit of Molecular Neurosciences, University Campus Bio-Medico, Rome, Rome, Italy.

Filippo Galli (F)

Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.

Alessandro Soluri (A)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy.

Maurizio Mattei (M)

Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, "Tor Vergata" University, Rome, Italy.

Rosella Cicconi (R)

Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, "Tor Vergata" University, Rome, Italy.

Roberto Massari (R)

Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso", Via E. Ramarini, 32, 00015, Monterotondo Scalo (Rome), Italy.

Viviana Trezza (V)

Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy. viviana.trezza@uniroma3.it.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH