FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 12 2022
29 12 2022
Historique:
received:
08
07
2022
accepted:
22
12
2022
entrez:
29
12
2022
pubmed:
30
12
2022
medline:
3
1
2023
Statut:
epublish
Résumé
Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1
Identifiants
pubmed: 36581671
doi: 10.1038/s41598-022-26986-2
pii: 10.1038/s41598-022-26986-2
pmc: PMC9800572
doi:
Substances chimiques
Dopamine Plasma Membrane Transport Proteins
0
Fmr1 protein, rat
0
Fragile X Mental Retardation Protein
139135-51-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22535Informations de copyright
© 2022. The Author(s).
Références
DSM-5. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, 2013).
Song, F. J., Barton, P., Sleightholme, V., Yao, G. L. & Fry-Smith, A. Screening for fragile X syndrome: a literature review and modelling study. Health Technol. Assess 7, 1–106. https://doi.org/10.3310/hta7160 (2003).
doi: 10.3310/hta7160
Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065. https://doi.org/10.1038/nrdp.2017.65 (2017).
doi: 10.1038/nrdp.2017.65
Maurin, T., Zongaro, S. & Bardoni, B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci. Biobehav. Rev. 46(Pt 2), 242–255. https://doi.org/10.1016/j.neubiorev.2014.01.006 (2014).
doi: 10.1016/j.neubiorev.2014.01.006
Harris, S. W. et al. Autism profiles of males with fragile X syndrome. Am. J. Ment. Retard. 113, 427–438. https://doi.org/10.1352/2008.113:427-438 (2008).
doi: 10.1352/2008.113:427-438
Hernandez, R. N. et al. Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. Am. J. Med. Genet. A 149A, 1125–1137. https://doi.org/10.1002/ajmg.a.32848 (2009).
doi: 10.1002/ajmg.a.32848
Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739. https://doi.org/10.1016/S0959-4388(00)00153-7 (2000).
doi: 10.1016/S0959-4388(00)00153-7
Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197. https://doi.org/10.1016/S0959-4388(97)80007-4 (1997).
doi: 10.1016/S0959-4388(97)80007-4
Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67, 53–83. https://doi.org/10.1016/S0301-0082(02)00011-4 (2002).
doi: 10.1016/S0301-0082(02)00011-4
Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–238. https://doi.org/10.1016/j.conb.2012.11.012 (2013).
doi: 10.1016/j.conb.2012.11.012
Gadow, K. D., Roohi, J., DeVincent, C. J. & Hatchwell, E. Association of ADHD, tics, and anxiety with dopamine transporter (DAT1) genotype in autism spectrum disorder. J. Child Psychol. Psychiatry 49, 1331–1338. https://doi.org/10.1111/j.1469-7610.2008.01952.x (2008).
doi: 10.1111/j.1469-7610.2008.01952.x
Bowton, E. et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl. Psychiatry 4, e464. https://doi.org/10.1038/tp.2014.90 (2014).
doi: 10.1038/tp.2014.90
Anderson, B. M. et al. Examination of association to autism of common genetic variationin genes related to dopamine. Autism. Res. 1, 364–369. https://doi.org/10.1002/aur.55 (2008).
doi: 10.1002/aur.55
Pavăl, D. A dopamine hypothesis of autism spectrum disorder. Dev. Neurosci. 39, 355–360. https://doi.org/10.1159/000478725 (2017).
doi: 10.1159/000478725
Lewis, M. & Kim, S. J. The pathophysiology of restricted repetitive behavior. J. Neurodev. Disord. 1, 114–132. https://doi.org/10.1007/s11689-009-9019-6 (2009).
doi: 10.1007/s11689-009-9019-6
Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. https://doi.org/10.1016/j.tins.2007.03.008 (2007).
doi: 10.1016/j.tins.2007.03.008
Chen, S. Y. et al. Parcellation of the striatal complex into dorsal and ventral districts. Proc. Natl. Acad. Sci. U S A 117, 7418–7429. https://doi.org/10.1073/pnas.1921007117 (2020).
doi: 10.1073/pnas.1921007117
Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476. https://doi.org/10.1038/nrn1919 (2006).
doi: 10.1038/nrn1919
Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691. https://doi.org/10.1101/cshperspect.a021691 (2015).
doi: 10.1101/cshperspect.a021691
Fieblinger, T. Striatal control of movement: A role for new neuronal (sub-) Populations?. Front. Hum. Neurosci. 15, 697284. https://doi.org/10.3389/fnhum.2021.697284 (2021).
doi: 10.3389/fnhum.2021.697284
Langen, M. et al. Changes in the development of striatum are involved in repetitive behavior in autism. Biol. Psychiatry 76, 405–411. https://doi.org/10.1016/j.biopsych.2013.08.013 (2014).
doi: 10.1016/j.biopsych.2013.08.013
Langen, M., Durston, S., Kas, M. J., van Engeland, H. & Staal, W. G. The neurobiology of repetitive behavior: …and men. Neurosci. Biobehav. Rev. 35, 356–365. https://doi.org/10.1016/j.neubiorev.2010.02.005 (2011).
doi: 10.1016/j.neubiorev.2010.02.005
Rodriguiz, R. M., Chu, R., Caron, M. G. & Wetsel, W. C. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav. Brain Res. 148, 185–198. https://doi.org/10.1016/s0166-4328(03)00187-6 (2004).
doi: 10.1016/s0166-4328(03)00187-6
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612. https://doi.org/10.1038/379606a0 (1996).
doi: 10.1038/379606a0
Hadar, R. et al. Rats overexpressing the dopamine transporter display behavioral and neurobiological abnormalities with relevance to repetitive disorders. Sci. Rep. 6, 39145. https://doi.org/10.1038/srep39145 (2016).
doi: 10.1038/srep39145
Sotnikova, T. D., Efimova, E. V. & Gainetdinov, R. R. Enhanced dopamine transmission and hyperactivity in the dopamine transporter heterozygous mice lacking the D3 dopamine receptor. Int. J. Mol. Sci. 21, 8216. https://doi.org/10.3390/ijms21218216 (2020).
doi: 10.3390/ijms21218216
Ciaccio, C. et al. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital. J. Pediatr. 43, 39. https://doi.org/10.1186/s13052-017-0355-y (2017).
doi: 10.1186/s13052-017-0355-y
Chromik, L. C. et al. The influence of hyperactivity, impulsivity, and attention problems on social functioning in adolescents and young adults with fragile X syndrome. J. Atten. Disord. 23, 181–188. https://doi.org/10.1177/1087054715571739 (2019).
doi: 10.1177/1087054715571739
Golden, C. E. M. et al. Deletion of the KH1 domain of Fmr1 leads to transcriptional alterations and attentional deficits in rats. Cereb Cortex 29, 2228–2244. https://doi.org/10.1093/cercor/bhz029 (2019).
doi: 10.1093/cercor/bhz029
Schiavi, S. et al. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutr. Neurosci. 25(5), 898–911. https://doi.org/10.1080/1028415X.2020.1819107 (2020).
doi: 10.1080/1028415X.2020.1819107
Schiavi, S. et al. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology https://doi.org/10.1038/s41386-022-01454-7 (2022).
doi: 10.1038/s41386-022-01454-7
Nikolaus, S. et al. GABAergic control of nigrostriatal and mesolimbic dopamine in the rat brain. Front. Behav. Neurosci. 12, 38 (2018).
doi: 10.3389/fnbeh.2018.00038
Nikolaus, S., Antke, C., Hautzel, H. & Mueller, H. W. Pharmacological treatment with L-DOPA may reduce striatal dopamine transporter binding in in vivo imaging studies. Nuklearmedizin 55, 21–28. https://doi.org/10.3413/Nukmed-0764-15-08 (2016).
doi: 10.3413/Nukmed-0764-15-08
Nikolaus, S. et al. DAT versus D2 receptor binding in the rat striatum: l-DOPA-induced motor activity is better predicted by reuptake than release of dopamine. Synapse 70, 369–377. https://doi.org/10.1002/syn.21911 (2016).
doi: 10.1002/syn.21911
Suwijn, S. R., de Bruin, K., de Bie, R. M. A. & Booij, J. The role of SPECT imaging of the dopaminergic system in translational research on Parkinson’s disease. Parkinsonism Relat. Disord. 20, S184–S186. https://doi.org/10.1016/S1353-8020(13)70043-9 (2014).
doi: 10.1016/S1353-8020(13)70043-9
Massari, R., D’Elia, A. & Soluri, A. A new high-resolution imaging system (HiRIS2) detector for preclinical SPECT imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 917, 25–30. https://doi.org/10.1016/j.nima.2018.11.095 (2019).
doi: 10.1016/j.nima.2018.11.095
Massari, R., D’Elia, A. & Soluri, A. Preliminary results on a small animal SPECT system based on H13700 PSMPT coupled with CRY018 array. Nucl. Instrum. Methods Phys. Res. Sect. A 940, 296–301. https://doi.org/10.1016/j.nima.2019.06.013 (2019).
doi: 10.1016/j.nima.2019.06.013
Massari, R., D’Elia, A., Soluri, A. & Soluri, A. Super spatial resolution (SSR) method for small animal SPECT imaging: a Monte Carlo study. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 982, 164584. https://doi.org/10.1016/j.nima.2020.164584 (2020).
doi: 10.1016/j.nima.2020.164584
D’Elia, A. et al. Development of a high-resolution SSR-SPECT system for preclinical imaging and neuroimaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1025, 166161. https://doi.org/10.1016/j.nima.2021.166161 (2022).
doi: 10.1016/j.nima.2021.166161
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).
doi: 10.1371/journal.pbio.1000412
Makanjuola, R. O., Hill, G., Dow, R. C., Campbell, G. & Ashcroft, G. W. The effects of psychotropic drugs on exploratory and stereotyped behaviour of rats studied on a hole-board. Psychopharmacology 55, 67–74. https://doi.org/10.1007/BF00432819 (1977).
doi: 10.1007/BF00432819
Servadio, M., Vanderschuren, L. J. & Trezza, V. Modeling autism-relevant behavioral phenotypes in rats and mice: Do “autistic” rodents exist?. Behav. Pharmacol. 26, 522–540. https://doi.org/10.1097/FBP.0000000000000163 (2015).
doi: 10.1097/FBP.0000000000000163
Melancia, F. et al. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol. 175, 3699–3712. https://doi.org/10.1111/bph.14435 (2018).
doi: 10.1111/bph.14435
Schiavi, S. et al. N-acetylcysteine mitigates social dysfunction in a rat model of autism normalizing glutathione imbalance and the altered expression of genes related to synaptic function in specific brain areas. Front. Psychiatry 13, 851679. https://doi.org/10.3389/fpsyt.2022.851679 (2022).
doi: 10.3389/fpsyt.2022.851679
Schiavi, S. et al. Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front. Cell Neurosci. 13, 479. https://doi.org/10.3389/fncel.2019.00479 (2019).
doi: 10.3389/fncel.2019.00479
Sestakova, N., Puzserova, A., Kluknavsky, M. & Bernatova, I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip. Toxicol. 6, 126–135. https://doi.org/10.2478/intox-2013-0020 (2013).
doi: 10.2478/intox-2013-0020
Manduca, A. et al. Sex-specific behavioural deficits induced at early life by prenatal exposure to the cannabinoid receptor agonist WIN55, 212-2 depend on mGlu5 receptor signalling. Br. J. Pharmacol. 177, 449–463. https://doi.org/10.1111/bph.14879 (2020).
doi: 10.1111/bph.14879
Manduca, A. et al. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur. Neuropsychopharmacol. 25, 1362–1374. https://doi.org/10.1016/j.euroneuro.2015.04.005 (2015).
doi: 10.1016/j.euroneuro.2015.04.005
Hammond, W. T. et al. A gamma camera re-evaluation of potassium iodide blocking efficiency in mice. Health Phys. 92, 396–406. https://doi.org/10.1097/01.HP.0000252322.45350.ee (2007).
doi: 10.1097/01.HP.0000252322.45350.ee
Pahuja, D. N., Rajan, M. G., Borkar, A. V. & Samuel, A. M. Potassium iodate and its comparison to potassium iodide as a blocker of
doi: 10.1097/00004032-199311000-00014
Leung, A. M. et al. American thyroid association scientific statement on the use of potassium iodide ingestion in a nuclear emergency. Thyroid 27, 865–877. https://doi.org/10.1089/thy.2017.0054 (2017).
doi: 10.1089/thy.2017.0054
Nikolaus, S. et al. Effects of L-DOPA on striatal iodine-123-FP-CIT binding and behavioral parameters in the rat. Nucl. Med. Commun. 34, 1223–1232. https://doi.org/10.1097/MNM.0b013e3283657404 (2013).
doi: 10.1097/MNM.0b013e3283657404
Nikolaus, S., Antke, C. & Muller, H. W. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav. Brain Res. 204, 32–66. https://doi.org/10.1016/j.bbr.2009.06.009 (2009).
doi: 10.1016/j.bbr.2009.06.009
Nikolaus, S., Antke, C., Beu, M. & Muller, H. W. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders–results from in vivo imaging studies. Rev. Neurosci. 21, 119–139. https://doi.org/10.1515/revneuro.2010.21.2.119 (2010).
doi: 10.1515/revneuro.2010.21.2.119
Palermo, G., Giannoni, S., Bellini, G., Siciliano, G. & Ceravolo, R. Dopamine transporter imaging, current status of a potential biomarker: a comprehensive review. Int. J. Mol. Sci. 22, 11234. https://doi.org/10.3390/ijms222011234 (2021).
doi: 10.3390/ijms222011234
Booij, J. et al. [123I]FP-CIT binds to the dopamine transporter as assessed by biodistribution studies in rats and SPECT studies in MPTP-lesioned monkeys. Synapse 27, 183–190. https://doi.org/10.1002/(SICI)1098-2396(199711)27:3%3c183::AID-SYN4%3e3.0.CO;2-9 (1997).
doi: 10.1002/(SICI)1098-2396(199711)27:3<183::AID-SYN4>3.0.CO;2-9
Nikolaus, S. et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev. Neurosci. 22, 625–645. https://doi.org/10.1515/RNS.2011.054 (2011).
doi: 10.1515/RNS.2011.054
Scherfler, C. et al. Evaluation of striatal dopamine transporter function in rats by in vivo beta-[
doi: 10.1006/nimg.2002.1158
Lancaster, J. L. et al. Automated regional behavioral analysis for human brain images. Front. Neuroinform. 6, 23. https://doi.org/10.3389/fninf.2012.00023 (2012).
doi: 10.3389/fninf.2012.00023
Loening, A. M. & Gambhir, S. S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imag. 2, 131–137. https://doi.org/10.1162/153535003322556877 (2003).
doi: 10.1162/153535003322556877
Laruelle, M. et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J. Nucl. Med. 35, 743–754 (1994).
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).
doi: 10.1371/journal.pbio.3000410
Sorensen, E. M. et al. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse. Behav. Pharmacol. 26, 733–740. https://doi.org/10.1097/FBP.0000000000000152 (2015).
doi: 10.1097/FBP.0000000000000152
Dolan, B. M. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. U S A 110, 5671–5676. https://doi.org/10.1073/pnas.1219383110 (2013).
doi: 10.1073/pnas.1219383110
Sare, R. M., Figueroa, C., Lemons, A., Loutaev, I. & Beebe Smith, C. Comparative Behavioral Phenotypes of Fmr1 KO, Fxr2 Het, and Fmr1 KO/Fxr2 Het Mice. Brain Sci. 9, 13. https://doi.org/10.3390/brainsci9010013 (2019).
doi: 10.3390/brainsci9010013
Ding, Q., Sethna, F. & Wang, H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav. Brain Res. 271, 72–78. https://doi.org/10.1016/j.bbr.2014.05.046 (2014).
doi: 10.1016/j.bbr.2014.05.046
Melancia, F. & Trezza, V. Modelling fragile X syndrome in the laboratory setting: a behavioral perspective. Behav. Brain Res. 350, 149–163. https://doi.org/10.1016/j.bbr.2018.04.042 (2018).
doi: 10.1016/j.bbr.2018.04.042
Hamilton, S. M. et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav. Neurosci. 128, 103–109. https://doi.org/10.1037/a0035988 (2014).
doi: 10.1037/a0035988
Tian, Y. et al. Loss of FMRP impaired hippocampal long-term plasticity and spatial learning in rats. Front. Mol. Neurosci. 10, 269. https://doi.org/10.3389/fnmol.2017.00269 (2017).
doi: 10.3389/fnmol.2017.00269
Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intract. Rare Dis. Res. 3, 118–133. https://doi.org/10.5582/irdr.2014.01024 (2014).
doi: 10.5582/irdr.2014.01024
Hodges, S. L. et al. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res. 157, 106193. https://doi.org/10.1016/j.eplepsyres.2019.106193 (2019).
doi: 10.1016/j.eplepsyres.2019.106193
Wong, H. et al. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol. Dis. 146, 105118. https://doi.org/10.1016/j.nbd.2020.105118 (2020).
doi: 10.1016/j.nbd.2020.105118
Kosillo, P. & Bateup, H. S. Dopaminergic dysregulation in syndromic autism spectrum disorders: insights from genetic mouse models. Front. Neural Circuits 15, 700968. https://doi.org/10.3389/fncir.2021.700968 (2021).
doi: 10.3389/fncir.2021.700968
Gerasimou, G. P., Aggelopoulou, T. C., Costa, D. C. & Gotzamani-Psarrakou, A. Molecular imaging (SPECT and PET) in the evaluation of patients with movement disorders. Nucl. Med. Rev. Cent. East Eur. 9, 147–153 (2006).
Palermo, G. & Ceravolo, R. Molecular imaging of the dopamine transporter. Cells 8, 872. https://doi.org/10.3390/cells8080872 (2019).
doi: 10.3390/cells8080872
Tatsch, K. & Poepperl, G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J. Nucl. Med. 54, 1331. https://doi.org/10.2967/jnumed.112.105379 (2013).
doi: 10.2967/jnumed.112.105379
Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601. https://doi.org/10.1002/mds.26424 (2015).
doi: 10.1002/mds.26424
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100. https://doi.org/10.1212/WNL.0000000000004058 (2017).
doi: 10.1212/WNL.0000000000004058
Paval, D. & Miclutia, I. V. The dopamine hypothesis of autism spectrum disorder revisited: current status and future prospects. Dev. Neurosci. 43, 73–83. https://doi.org/10.1159/000515751 (2021).
doi: 10.1159/000515751
Nakamura, K. et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch. Gen. Psychiatry 67, 59–68. https://doi.org/10.1001/archgenpsychiatry.2009.137 (2010).
doi: 10.1001/archgenpsychiatry.2009.137
Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M. & Kuikka, J. T. Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev. Med. Child Neurol. 50, 593–597. https://doi.org/10.1111/j.1469-8749.2008.03027.x (2008).
doi: 10.1111/j.1469-8749.2008.03027.x
Zürcher, N. R. et al. A simultaneous [(11)C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl. Psychiatry 11, 33–33. https://doi.org/10.1038/s41398-020-01170-0 (2021).
doi: 10.1038/s41398-020-01170-0
Smith, L. N. et al. Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 82, 645–658. https://doi.org/10.1016/j.neuron.2014.03.028 (2014).
doi: 10.1016/j.neuron.2014.03.028
Huebschman, J. L. et al. The role of the dorsal striatum in a mouse model for fragile X syndrome: behavioral and dendritic spine assessment. Brain Res 1795, 148060. https://doi.org/10.1016/j.brainres.2022.148060 (2022).
doi: 10.1016/j.brainres.2022.148060
Fish, E. W. et al. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 8, e77896. https://doi.org/10.1371/journal.pone.0077896 (2013).
doi: 10.1371/journal.pone.0077896
Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & Puglisi-Allegra, S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15, 433–442. https://doi.org/10.1097/00008877-200409000-00018 (2004).
doi: 10.1097/00008877-200409000-00018
Leo, D. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J. Neurosci. 38, 1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018 (2018).
doi: 10.1523/JNEUROSCI.1931-17.2018
Gainetdinov, R. R. et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283, 397–401. https://doi.org/10.1126/science.283.5400.397 (1999).
doi: 10.1126/science.283.5400.397
Yamazaki, M., Arai, T., Yarimizu, J. & Matsumoto, M. 5-HT5A receptor antagonist ASP5736 ameliorates several abnormal behaviors in an Fmr1-targeted transgenic male rat model of fragile X syndrome. Int. J. Neuropsychopharmacol. 25, 786–793. https://doi.org/10.1093/ijnp/pyac041 (2022).
doi: 10.1093/ijnp/pyac041
Uutela, M. et al. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome. Front. Cell Neurosci. 8, 150. https://doi.org/10.3389/fncel.2014.00150 (2014).
doi: 10.3389/fncel.2014.00150
Lozano, R., Hare, E. B. & Hagerman, R. J. Modulation of the GABAergic pathway for the treatment of fragile X syndrome. Neuropsychiatr. Dis. Treat. 10, 1769–1779. https://doi.org/10.2147/NDT.S42919 (2014).
doi: 10.2147/NDT.S42919
Olmos-Serrano, J. L., Corbin, J. G. & Burns, M. P. The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome. Dev. Neurosci. 33, 395–403. https://doi.org/10.1159/000332884 (2011).
doi: 10.1159/000332884
Shim, S. H. et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1824–1828. https://doi.org/10.1016/j.pnpbp.2008.08.005 (2008).
doi: 10.1016/j.pnpbp.2008.08.005
Uutela, M. et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav. 11, 513–523. https://doi.org/10.1111/j.1601-183X.2012.00784.x (2012).
doi: 10.1111/j.1601-183X.2012.00784.x
Qiu, G., Chen, S., Guo, J., Wu, J. & Yi, Y. H. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice. Behav. Brain Res. 312, 212–218. https://doi.org/10.1016/j.bbr.2016.06.024 (2016).
doi: 10.1016/j.bbr.2016.06.024
Ventura, R., Pascucci, T., Catania, M. V., Musumeci, S. A. & Puglisi-Allegra, S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 15, A28 (2004).
doi: 10.1097/00008877-200409000-00107
Chao, O. Y. et al. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol. Brain 13, 111. https://doi.org/10.1186/s13041-020-00649-7 (2020).
doi: 10.1186/s13041-020-00649-7
Jiang, A. et al. Sex differences in dopamine receptor signaling in fmr1 knockout mice: a pilot study. Brain Sci. 11, 1398. https://doi.org/10.3390/brainsci11111398 (2021).
doi: 10.3390/brainsci11111398
Fulks, J. L. et al. Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem. Neurosci. 1, 679–690. https://doi.org/10.1021/cn100032f (2010).
doi: 10.1021/cn100032f
Zhu, X., Ottenheimer, D. & DiLeone, R. J. Activity of D1/2 receptor expressing neurons in the nucleus accumbens regulates running, locomotion, and food intake. Front. Behav. Neurosci. 10, 66. https://doi.org/10.3389/fnbeh.2016.00066 (2016).
doi: 10.3389/fnbeh.2016.00066
Wang, H. et al. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59, 634–647. https://doi.org/10.1016/j.neuron.2008.06.027 (2008).
doi: 10.1016/j.neuron.2008.06.027
Wang, H., Kim, S. S. & Zhuo, M. Roles of fragile x mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent & #x3b1;-Amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization *. J. Biol. Chem. 285, 21888–21901. https://doi.org/10.1074/jbc.M110.116293 (2010).
doi: 10.1074/jbc.M110.116293
Paul, K., Venkitaramani, D. V. & Cox, C. L. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice. J. Physiol. 591, 1133–1143. https://doi.org/10.1113/jphysiol.2012.241067 (2013).
doi: 10.1113/jphysiol.2012.241067
Ott, T. & Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 23, 213–234. https://doi.org/10.1016/j.tics.2018.12.006 (2019).
doi: 10.1016/j.tics.2018.12.006
DiCarlo, G. E. et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J. Clin. Invest. 129, 3407–3419. https://doi.org/10.1172/JCI127411 (2019).
doi: 10.1172/JCI127411
Napolitano, A. et al. Sex differences in autism spectrum disorder: diagnostic, neurobiological, and behavioral features. Front Psychiatry 13, 889636. https://doi.org/10.3389/fpsyt.2022.889636 (2022).
doi: 10.3389/fpsyt.2022.889636