Effects of Multiple Local Environments on Electron Energy Loss Spectra of Epitaxial Perovskite Interfaces.
Journal
The journal of physical chemistry. C, Nanomaterials and interfaces
ISSN: 1932-7447
Titre abrégé: J Phys Chem C Nanomater Interfaces
Pays: United States
ID NLM: 101299949
Informations de publication
Date de publication:
22 Dec 2022
22 Dec 2022
Historique:
received:
27
09
2022
revised:
15
11
2022
entrez:
30
12
2022
pubmed:
31
12
2022
medline:
31
12
2022
Statut:
ppublish
Résumé
The role of local chemical environments in the electron energy loss spectra of complex multiferroic oxides was studied using computational and experimental techniques. The evolution of the O K-edge across an interface between bismuth ferrite (BFO) and lanthanum strontium manganate (LSMO) was considered through spectral averaging over crystallographically equivalent positions to capture the periodicity of the local O environments. Computational techniques were used to investigate the contribution of individual atomic environments to the overall spectrum, and the role of doping and strain was considered. Chemical variation, even at the low level, was found to have a major impact on the spectral features, whereas strain only induced a small chemical shift to the edge onset energy. Through a combination of these methods, it was possible to explain experimentally observed effects such as spectral flattening near the interface as the combination of spectral responses from multiple local atomic environments.
Identifiants
pubmed: 36582487
doi: 10.1021/acs.jpcc.2c06879
pmc: PMC9791663
doi:
Types de publication
Journal Article
Langues
eng
Pagination
21453-21466Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Ultramicroscopy. 2017 Sep;180:41-51
pubmed: 28385362
Ultramicroscopy. 2005 Sep;104(2):141-51
pubmed: 15876497
Ultramicroscopy. 2021 Feb;221:113190
pubmed: 33321423
ACS Nano. 2020 Oct 27;14(10):12697-12707
pubmed: 32910642
Ultramicroscopy. 2017 Jul;178:105-111
pubmed: 27106633
Adv Mater. 2020 Nov;32(45):e2003711
pubmed: 32954556
Ultramicroscopy. 2016 Nov;170:43-59
pubmed: 27529804
J Phys Condens Matter. 2009 Mar 11;21(10):104203
pubmed: 21817423
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
J Phys Condens Matter. 2009 Mar 11;21(10):104210
pubmed: 21817430
Micron. 2021 Jan;140:102981
pubmed: 33202362
Phys Rev Lett. 2012 Dec 14;109(24):246101
pubmed: 23368348
ACS Nano. 2013 Aug 27;7(8):7145-50
pubmed: 23869545
Phys Rev B Condens Matter. 1994 May 15;49(20):14251-14269
pubmed: 10010505
Nat Mater. 2014 Nov;13(11):1019-25
pubmed: 25129618
Ultramicroscopy. 2005 Feb;102(3):199-207
pubmed: 15639350
J Phys Condens Matter. 2016 May 18;28(19):195202
pubmed: 27094207
Sci Adv. 2016 Mar 25;2(3):e1501652
pubmed: 27051872
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
pubmed: 10004490
Ultramicroscopy. 2003 Sep;96(3-4):509-22
pubmed: 12871812
Ultramicroscopy. 2022 Jan 26;234:113477
pubmed: 35123207
Micron. 2010 Oct;41(7):695-709
pubmed: 20576440
Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190542
pubmed: 32082059
J Phys Condens Matter. 2017 Jun 7;29(22):225303
pubmed: 28394256
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Ultramicroscopy. 2012 Mar;114:62-71
pubmed: 22356790
Nat Commun. 2011 Nov 29;2:567
pubmed: 22127063
Phys Rev Lett. 2012 Jan 27;108(4):047601
pubmed: 22400888
J Phys Condens Matter. 2009 Mar 11;21(10):104204
pubmed: 21817424
ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5994-6000
pubmed: 23758047
Sci Rep. 2014 Feb 26;4:4206
pubmed: 24569650
Nanoscale Res Lett. 2019 Apr 24;14(1):142
pubmed: 31016415